Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (9): 102-107    DOI: 10.13523/j.cb.20140915
综述     
siRNA抑制乙肝病毒的研究进展
苏蓝, 张萍, 汪杨俊琦, 钟儒刚
北京工业大学生命科学与生物工程学院 环境与病毒肿瘤学北京市重点实验室 北京 100124
Progress on the Inhibition of Hepatitis B virus by siRNA Strategy
SU Lan, ZHANG Ping, WANGYANG Jun-qi, ZHONG Ru-gang
College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China;
Beijing Key Laboratory of Environmental and Viral Oncology, Beijing 100124, China
 全文: PDF(459 KB)   HTML
摘要:

乙型肝炎作为一种发病率高、死亡率高的传染性疾病,已严重威胁人类健康,乙肝病毒(hepatitis B virus,HBV)是诱发乙型肝炎的重要病因。目前,最主要的治疗方法是运用抗病毒药物控制病情,但这些药物都不能完全治愈乙型肝炎且复发率高。近年来,RNA干扰技术(RNA interference, RNAi)逐渐成为有效、快速治疗乙型肝炎的新疗法。利用RNA干扰技术体外合成针对HBV基因的siRNA,选择适当的载体将其运送至靶细胞,使HBV基因沉默,从而抑制病毒复制,可有效达到治疗乙肝的效果。本文围绕siRNA沉默HBV基因的设计原理、递送载体、靶向策略、以及治疗效果与应用前景等方面进行了系统综述,为今后siRNA治疗乙肝的临床应用提供参考。

关键词: 乙肝病毒RNA干扰小干扰RNA    
Abstract:

Hepatitis B is one of the highest incidence and mortality diseases and caused mainly by the acute and chronic infection of hepatitis B virus (HBV). Nowadays, the treatments of HBV-infected patients are mainly dependent on the antiviral drugs, such as nucleotide analogues and interferon. However, analysis of viral kinetics during therapy revealed that the virus replication was not completely inhibited and the rate of clearance of infected hepatocytes was slow during therapy. Recently, large amount of experiments showed that RNA interference (RNAi) were capable of reducing HBV gene expression and replication in vivo when HBV genes were delivered simultaneously with small interfering RNA (siRNA) or siRNA expression constructs. RNAi-based therapeutics has the potential to treat chronic HBV infection in a fundamentally different manner than current therapies. The main target HBV gene to be silenced, siRNA delivery strategy, the therapy efficiency and the application prospects have been discussed in this review.

Key words: Hepatitis B Virus    RNA interference    Small interfering RNA
收稿日期: 2014-05-27 出版日期: 2014-09-25
ZTFLH:  Q522  
基金资助:

国家自然科学基金(21107005);教育部博士点新教师基金(3C015001201201)资助项目

通讯作者: 张萍     E-mail: zplife@bjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

苏蓝, 张萍, 汪杨俊琦, 钟儒刚. siRNA抑制乙肝病毒的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 102-107.

SU Lan, ZHANG Ping, WANGYANG Jun-qi, ZHONG Ru-gang. Progress on the Inhibition of Hepatitis B virus by siRNA Strategy. China Biotechnology, 2014, 34(9): 102-107.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140915        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I9/102


[1] Roberts L R, Gores G J. Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin Liver Dis, 2005, 25(2): 212-225.

[2] Perrillo R. Benefits and risks of interferon therapy for hepatitis B. Hepatology, 2009, 49(5): 103-111.

[3] Zoulim F, Locarnini S. Hepatitis B virus resistance to nucleos(t)ide analogues. Gastroenterology, 2009, 137(5): 1593-1608.

[4] Elbashir S M, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836): 494-498.

[5] Eije K J, Brake O, Berkhout B. Human immunodeficiency virus type 1 escape is restricted when conserved genome sequences are targeted by RNA interference. J Virol, 2008, 82(6): 2895-2903.

[6] Deng Y, Wang C C, Choy K W, et al. Therapeutic potentials of gene silencing by RNA interference: Principles,challenges, and new strategies. Gene, 2013, 538(2014): 217-227.

[7] Daniela C, Kumi S, Robert L, et al. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res, 2007, 35(15): 5154-5164.

[8] Rand T A, Petersen S, Du F H, et al. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell, 2005, 123(4): 621-629.

[9] Kathy K, Esther M V, Ryan M S, et al. Rational design leads to more potent RNA interference against hepatitis B virus: factors effecting silencing efficiency. Mol Ther, 2009, 17(3): 538-547.

[10] Kramvis A, Kew M, Franc G. Hepatitis B virus genotypes. Vaccine, 2004, 23(2005): 2409-2423.

[11] Liu W H, Yeh S H, Chen P J. Role of microRNAs in hepatitis B virus replication and pathogenesis. Biochim Biophys Acta, 2011, 1809(11-12):678-785.

[12] Jesse S, William S M. Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell, 1982, 29(2): 403-415.

[13] Tuttleman J S, Pourcel C, Summers J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected. Cell, 1986, 47(3): 451-460.

[14] Cho H A, Park I S, Kim T W, et al. Suppression of hepatitis B virus-derived human hepatocellular carcinoma by NF-kappaB-inducing kinase-specific siRNA using liver-targeting liposomes. Arch Pharm Res, 2009, 32(7): 1077-1086.

[15] Chen Y, Mahato R I. siRNA pool targeting different sites of human hepatitis B surface antigen efficiently inhibits HBV infection. J Drug Target, 2008, 16(2): 140-148.

[16] Li G Q, Gu H X, Li D, et al. Inhibition of hepatitis B virus cccDNA replication by siRNA. Biochem Biophys Res Commun, 2007, 355(2): 404-408.

[17] Shin D, Kim S I, Kim M, et al. Efficient inhibition of hepatitis B virus replication by small interfering RNAs targeted to the viral X gene in mice. Virus Research, 2006, 119(2006): 146-153.

[18] Xiong X F, Yang H L, Weatland C E, et al. In vitro evaluation of hepatitis B virus polymerase mutations associated with famciclovir resistance. Hepatology, 2000, 31(1): 219-224.

[19] Janaiah K, Raghu R C, Kathryn A O, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 2009, 137(6): 1005-1017.

[20] Hornung V, Guenthner-Biller M, Bourquin C, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med, 2005, 11(3): 263-271.

[21] Joacim E, Hakan T, Karl L, et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res, 2005, 33(1): 439-447.

[22] Chiu Y L, Rana T M. SiRNA function in RNAi: A chemical modification analysis. RNA, 2003, 9(9): 1034-1048.

[23] Morrissey D V, Lockridge J A, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol, 2005, 23(8): 1002-1007.

[24] Chen X J, Qian Y Y, Yan F, et al. 5’-Triphosphate-siRNA activates RIG-I-dependent type I interferon production and enhances inhibition of hepatitis B virus replication in HepG2.2.15 cells. Eur J Pharmacol, 2013, 721(1-3): 86-95.

[25] Couto L B, High K A. Viral vector-mediated RNA interference. Curr Opin Pharmacol, 2010, 10(5): 534-542.

[26] Moore M D, McGarvey M J, Russell R A, et al. Stable inhibition of hepatitis B virus proteins by small interfering RNA expressed from viral vectors. J Gene Med, 2005, 7(7): 918-925.

[27] Uprichard S L, Boyd B, Althage A, et al. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci USA, 2005, 102(3): 773-778.

[28] Morris K V, Rossi J J. Lentiviral-mediated delivery of siRNAs for antiviral therapy. Gene Ther, 2006, 13(6): 553-558.

[29] Deng L, Li G, Xi L, et al. Hepatitis B virus inhibition in mice by lentiviral vector mediated short hairpin RNA. BMC Gastroenterol, 2009, 9(73): 1-11.

[30] Wang J P, Feng S S, Wang S, et al. Evaluation of cationic nanoparticles of biodegradable copolymers as siRNA delivery system for hepatitis B treatment. Int J Pharm, 2010, 400(1-2): 194-200.

[31] Akiko E, Bryan R M, Yung C C, et al. Efficient siRNA delivery into primary cells by a peptide transduction-dsRNA binding domain (PTD-DRBD) fusion protein. Nat Biotechnol, 2009, 27(6): 567-571.

[32] Wooddell C I, Rozema D B, Hossbach M, et al. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol Ther, 2013, 21(5): 973-985.

[33] Mével M, Kamaly N, Carmona S, et al. DODAG; a versatile new cationic lipid that mediates efficient delivery of pDNA and siRNA. J Control Release, 2010, 143(2): 222-232.

[34] Carmona S, Jorgensen M R, Kolli S, et al. Controlling HBV replicationin vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles. Mol Pharm, 2009, 6(3): 706-717.

[35] Thongthae N, Payungporn S, Poovorawan Y, et al. A rational study for identification of highly effective siRNAs against hepatitis B virus. Exp Mol Pathol, 2014, 97(1): 120-127.

[36] Li G1, Fu L, Jiang J, et al. siRNA combinations mediate greater suppression of hepatitis B virus replication in mice. Cell Biochem Biophys, 2014, 69(3): 641-647.

[37] Ren G L, Huang G Y, Zheng H, et al. Changes in innate and permissive immune responses after HBV transgenic mouse vaccination and llong-term-siRNA treatment. PLoS One, 2013, 8(3): e57525.

[38] Robbins M, Judge A, Ambegia E, et al. Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum Gene Ther, 2008, 19(10):991-999.

[39] Grimm D, Streetz K L, Jopling C L, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature, 2006, 441(7092): 537-542.

[40] Kleinman M E, Yamada K, Takeda A, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature, 2008, 452(7187): 591-597.

[1] 冯昭,李江浩,王佳华. 刺槐核糖体蛋白同源基因RpRPL22在共生结瘤过程中功能研究[J]. 中国生物工程杂志, 2021, 41(7): 10-21.
[2] 刘丽艳,刘琪琦,张影,王升启. 双链探针实时荧光PCR核酸检测新技术研究*[J]. 中国生物工程杂志, 2020, 40(11): 28-34.
[3] 程瑜,施琼,安利钦,范梦恬,皇改改,翁亚光. BMP7基因沉默抑制钙盐诱导猪主动脉瓣膜间质细胞成骨分化 *[J]. 中国生物工程杂志, 2019, 39(5): 63-71.
[4] 徐燕,刘正芸,张琬棂,王盛羽,王欢. 靶向干扰TAGLN表达对HBV阳性肝癌细胞生物学行为的影响及机制初探 *[J]. 中国生物工程杂志, 2019, 39(11): 13-21.
[5] 冯昭,丑敏霞. Rpfan37在刺槐共生结瘤过程中的功能探究 *[J]. 中国生物工程杂志, 2018, 38(5): 47-55.
[6] 董维鹏,张少华,许祥,燕炯. 下调Fsp27基因表达联合杨梅素干预对3T3-L1细胞脂解的影响[J]. 中国生物工程杂志, 2018, 38(12): 7-13.
[7] 胡娜, 刘清, 唐照勇, 汤禾静, 敖澜, 赵紫豪, 方廖琼. siRNA干扰MMP-9FAK双基因抑制小鼠黑色素瘤生长和在体迁移[J]. 中国生物工程杂志, 2016, 36(5): 34-39.
[8] 刘怡萱, 边珍, 马红梅. 癌症基因治疗技术进展与展望[J]. 中国生物工程杂志, 2016, 36(5): 106-111.
[9] 刘丽, 杨晓慧, 王瑞明. RNA干扰沉默KAT基因对蜜蜂合成10-HDA的影响[J]. 中国生物工程杂志, 2016, 36(4): 63-68.
[10] 赵志武, 王君实, 马敏, 张少华, 燕炯. 下调Perilipin 1基因表达对3T3-L1细胞脂解的影响[J]. 中国生物工程杂志, 2016, 36(3): 17-22.
[11] 薛玉文, 李铁军, 周家名, 陈莉. 多靶向RNA干扰技术在基因治疗中的应用与前景[J]. 中国生物工程杂志, 2015, 35(1): 75-81.
[12] 汤禾静, 唐照勇, 刘隆兴, 张小梅, 王祎婷, 方廖琼. siRNA联合沉默MMP-9和FAK基因对小鼠黑色素瘤高转移细胞B16F10体外侵袭和迁移的影响[J]. 中国生物工程杂志, 2014, 34(9): 40-47.
[13] 黄天晴, 孔庆然, 李妍, 于淼, 刘忠华. 胰岛素受体底物1和2敲低对猪肝脏细胞糖脂代谢的影响[J]. 中国生物工程杂志, 2014, 34(4): 27-35.
[14] 庞敏, 王海龙, 郭民, 郭睿. 人ANKRD49基因真核表达载体的构建及其功能的初步研究和RNA干扰靶点的鉴定[J]. 中国生物工程杂志, 2014, 34(10): 15-21.
[15] 张浩然, 曾志勇, 陈君敏. 体外RNA干扰下调DEPTOR表达对人多发性骨髓瘤细胞增殖和凋亡能力的影响[J]. 中国生物工程杂志, 2013, 33(5): 13-21.