Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (11): 23-28    DOI: 10.13523/j.cb.20151104
研究报告     
ste3与ste4基因双敲除对依博素生物合成的影响
白利平, 姜蓉, 郭连宏, 张洋, 李元
中国医学科学院/北京协和医学院医药生物技术研究所 北京 100050
The Effects of ste3 and ste4 Genes Double Disruption in Ebosin Biosynthesis
BAI Li-ping, JIANG Rong, GUO Lian-hong, ZHANG Yang, LI Yuan
Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
 全文: PDF(903 KB)   HTML
摘要:

目的:以往研究已确定链霉菌胞外多糖依博素的生物合成基因簇(ste), 生物信息学分析基因簇中 ste3 和ste4 编码糖转运相关膜蛋白,现研究分析 ste3 和ste4 与依博素生物合成的相关性。方法:通过基因同源重组双交换获得 ste3 和ste4 双基因缺失突变株,经Southern 杂交验证后,对该菌株进行了基因互补研究。分离提取各菌株发酵液的胞外多糖,并计算产量。结果:双基因缺失株产生的胞外多糖依博素与野生株相比,产量从319mg/L降低至153mg/L,平均产量降低52%以上;基因互补后,依博素平均产量上升到299mg/L,基本恢复至野生株依博素产量水平。结论:本研究首次阐明了编码糖转运相关膜蛋白基因 ste3 和ste4 在依博素的生物合成中起重要作用,为研究链霉菌139的初级代谢和次级代谢之间的相关性奠定了基础。

关键词: 链霉菌ste3 ste4基因双敲除依博素    
Abstract:

Objective: The biosynthesis cluster (ste) of a novel exololysaccharide called Ebosin producing by Streptomyces had been identified previously,that ste3 and ste4 maybe encode a membrane spanning protein probably for sugar import on the basis of bioinformatics analysis. This work studied If ste3 and ste4 were involved in Ebosin biosynthesis. Methods: the ste3 and ste4 genes were disrupted together with a double crossover via homologous recombination. The mutant strain was identified by southern blot and gene complementation also performed. The production of Ebosin through isolating it from wild type, mutant and complementation was analyzed. Results: Ebosin isolated from the supernatants of fermentation cultures of the mutant strain was 153mg/L, remarkably lower than that of the wild-type strain (319mg/L). Complementation of the mutant strain resulted in a recovery of the EPS production (299mg/L) comparing with the wild-type strain. Conclusion: This research firstly elucidate that genes ste3 and ste4 encoding a membrane spanning protein involved in Ebosin biosynthesis and lay the foundation for studying the relationship between primary and second metabolism of Streptomyces sp. 139.

Key words: ste3 ste4    Ebosin    Streptomyces    Gene double disruption
收稿日期: 2015-06-25 出版日期: 2015-11-25
ZTFLH:  Q78  
基金资助:

国家自然科学基金(31070086),北京市自然科学基金(5092020),北京协和医学院协和青年科研基金(3332014009,3332015166),中央级公益性科研院所基本科研业务专项(IMBF2015011)资助项目

通讯作者: 白利平     E-mail: lipingbai1973@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

白利平, 姜蓉, 郭连宏, 张洋, 李元. ste3与ste4基因双敲除对依博素生物合成的影响[J]. 中国生物工程杂志, 2015, 35(11): 23-28.

BAI Li-ping, JIANG Rong, GUO Lian-hong, ZHANG Yang, LI Yuan. The Effects of ste3 and ste4 Genes Double Disruption in Ebosin Biosynthesis. China Biotechnology, 2015, 35(11): 23-28.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20151104        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I11/23

[1] Jing C, Jianbo W, Yuan L, et al. A new IL-1 receptor inhibitor 139A: fermentation, isolation, physico-chemical properties and structure. J Antibiot (Tokyo), 2003, 56(2):87-90.
[2] Zhang Y, Wang L F, Bai J Y, et al. Anti-inflammatory effect of Ebosin on rat collagen-induced arthritis through suppessing production of interleukin-1β, interleukin-6 and tumor necrosis factor. Eur J Inflamm, 2013, 11(3):677-688.
[3] Wang L Y, Li S T, Li Y. Identification and characterization of a new exopolysaccharide biosynthesis gene cluster from Streptomyces. FEMS Microbiol Lett, 2003, 220(1):21-27.
[4] Bai L, Chang M, Shan J, et al. Identification and characterization of a novel spermidine/spermine acetyltransferase encoded by gene ste26 from Streptomyces sp. 139. Biochimie, 2011, 93(9):1401-1407.
[5] Zhang Y, Zhou J, Chang M, et al. Characterization and functional evidence for Ste27 of Streptomyces sp. 139 as a novel spermine/spermidine acetyltransferase. Biochem J, 2012, 443(3):727-734.
[6] 白利平,李元. 链霉菌调控蛋白DasRABC的研究进展. 微生物学通报, 2010, 37(9):1369-1373. Bai L P, Li Y. Study of DasRABC in Streptomyces. Microbiology China, 2010, 37(9):1369-1373.
[7] Rigali S, Titgemeyer F, Barends S, et al. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep, 2008, 9(7):670-675.
[8] Rigali S, Nothaft H, Noens E E, et al. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol, 2006, 61(5):1237-1251.
[9] Seo J W, Ohnishi Y, Hirata A, et al. ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus. J Bacteriol, 2002, 184(1):91-103.
[10] Bai L, Qi X, Zhang Y, et al. A new GntR family regulator Ste1 in Streptomyces sp. 139. Appl Microbiol Biotechnol, 2013, 97(19):8673-8682.
[11] Kieser T, Bibb M J, Butter M J, et al. Practical Streptomyces Genetics. Norwich:The John Innes Foundation, 2000.
[12] Marchler-Bauer A, Derbyshire M K, Gonzales N R, et al. CDD: NCBI's conserved domain database. Nucleic Acids Res, 2015, 43(Database issue):D222-226.
[13] Herrou J, Crosson S. Myo-inositol and D-ribose ligand discrimination in an ABC periplasmic binding protein. J Bacteriol, 2013, 195(10):2379-2388.
[14] Colson S, van Wezel G P, Craig M, et al. The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor. Microbiology, 2008, 154(Pt 2):373-382.
[15] Saito A, Shinya T, Miyamoto K, et al. The dasABC gene cluster, adjacent to dasR, encodes a novel ABC transporter for the uptake of N,N'-diacetylchitobiose in Streptomyces coelicolor A3(2). Appl Environ Microbiol, 2007, 73(9):3000-3008.
[16] Lebeer S, Verhoeven T L, Francius G, et al. Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl Environ Microbiol, 2009, 75(11):3554-3563.

[1] 冯宝琪,冯娇,张苗,刘洋,曹睿,尹涵之,齐凤仙,李子龙,尹守亮. 利用Tn5型转座突变系统筛选高产阿维菌素菌株*[J]. 中国生物工程杂志, 2021, 41(7): 32-41.
[2] 王珊,薛正莲,孙俊峰,王芳,周健,刘艳,王洲. 盐增强培养对弗氏链霉菌产新霉素的影响[J]. 中国生物工程杂志, 2021, 41(7): 22-31.
[3] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[4] 王优蓓,郭思妤,常碧博,叶蕊芳,花强. 螺旋链霉菌遗传操作系统-接合转移体系的建立[J]. 中国生物工程杂志, 2021, 41(2/3): 45-52.
[5] 吴果果,宋淑婷,岳荣,张晶,关莹,王玥,刘宝爱,吕学敏,魏建军,张会图. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用 *[J]. 中国生物工程杂志, 2019, 39(11): 78-86.
[6] 宋佳雯, 田苏, 张玉如, 王志珍, 常忠义, 高红亮, 步国建, 金明飞. 基因组重排筛选高产谷氨酰胺转胺酶菌株[J]. 中国生物工程杂志, 2017, 37(9): 105-111.
[7] 田淑翠, 牛延宁, 常忠义, 高红亮, 步国健, 金明飞. 常压室温等离子体(ARTP)诱变茂源链霉菌菌株[J]. 中国生物工程杂志, 2016, 36(9): 47-53.
[8] 尹守亮, 林智炜, 张玉秀, 王为善, 史明欣, 杨克迁. 工程改造龟裂链霉菌提高土霉素产量[J]. 中国生物工程杂志, 2016, 36(7): 72-82.
[9] 郭玮婷, 张慧, 查东风, 黄汉峰, 黄静, 高红亮, 常忠义, 金明飞, 鲁伟. 产耐高温谷氨酰胺转胺酶菌株的快速筛选方法[J]. 中国生物工程杂志, 2015, 35(8): 83-89.
[10] 刘雅清, 侯孝仑, 郭玮婷, 常忠义, 高红亮, 步国健, 鲁伟, 解秀娟, 金明飞. 甲壳素促进茂源链霉菌发酵产酶[J]. 中国生物工程杂志, 2015, 35(6): 40-45.
[11] 李晓梅, 林春燕, 逄爱萍, 李晓波, 赵广荣. 合成生物学在链霉菌次级代谢产物研发中的应用[J]. 中国生物工程杂志, 2015, 35(4): 92-97.
[12] 陶文娜, 夏立秋, 丁学知, 唐滢. 刺糖多孢菌中铵载体蛋白基因amtS的克隆及功能研究[J]. 中国生物工程杂志, 2015, 35(2): 25-30.
[13] 赵国玲, 陶欣艺, 王风清, 魏东芝. 棘白霉素脱酰酶基因工程菌的构建及应用研究[J]. 中国生物工程杂志, 2015, 35(1): 67-74.
[14] 岳昌武, 李园园, 吕玉红, 王苗, 邵美云, 刘明皓, 黄英. 海洋链霉菌Streptomyces olivaceus FXJ7.023来源多功能几丁质酶的克隆、表达及鉴定[J]. 中国生物工程杂志, 2014, 34(8): 47-53.
[15] 陈佳, 金明飞, 谭玉静, 刘颖, 田沛霖, 常忠义, 步建国. NaCl对轮枝链霉菌产谷氨酰胺转胺酶的促进作用研究[J]. 中国生物工程杂志, 2013, 33(2): 54-58.