Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (03): 63-68    
研究报告     
气道内微量雾化机对质粒DNA完整性和基因转染效率的影响
王虹1,2, 孙文武2, 马壮2
1. 第四军医大学西京医院 西安 710032;
2. 沈阳军区总医院全军呼吸和变态反应疾病诊治中心 沈阳 110016
Effect of a New Nebulizer on Plasmid DNA Integrity and Gene Transfection
WANG Hong1,2, SUN Wen-wu2, MA Zhuang2
1. Department of Respiratory Medicine, Xijing Hospital, Fouth Military Medical University, Xi’an 710032, China;
2. The Army Center of Respiratory and Allergic Disease Diagnosis and Management, General Hospital of Shenyang Military Region, Shenyang 110016, China
 全文: PDF(731 KB)   HTML
摘要:

目的:探索新型气道内微量雾化机对质粒DNA(pDNA)完整性和整体动物基因转染效率的影响。方法:首先,研究新型气道内微量雾化机对pDNA破坏程度。分别向新型气道内微量雾化机和目前临床普遍使用的机械喷射式雾化机的加药池内加入2ml pDNA(20μg/ml),在开始雾化后第1min、3min、5min分别收集两种雾化机嘴处的雾化液滴,用琼脂糖凝胶电泳观察比较质粒的完整性。其次,研究整新型气道内微量雾化机在整体动物上对基因转染效率的影响。分别用新型气道内微量雾化机和目前临床普遍使用的机械喷射式雾化机,给大鼠雾化经多聚乙烯亚胺(polyethylenimine,PEI)修饰的相同量的绿色荧光蛋白质粒(plasmid DNA of green fluorescent protein gene, pEGFP)3.3μg(PEI/pEGFP),24h后提取动物肺组织进行反转录,用real time PCR及琼脂糖凝胶电泳观察分析绿色荧光蛋白(green fluorescent protein, GFP)的mRNA表达情况。结果:新型气道内微量雾化机在雾化第1min、第3min、第5min后完整的质粒比例分别为(99.6±0.7)%、(100±1.2)%、(99.6±0.7)%,与未雾化对照相比(P>0.05,n=3),无统计学差异,新型雾化机对质粒破坏性可以忽略。临床常用的喷射式雾化机在相同时间段内完整的质粒比例分别为(70.3±1.5)%、(49.3±1.5)%、(32.7±0.6)%。与未雾化对照相比(P<0.05,n=3)有统计学差异,并且随雾化时间增加临床常用的喷射式雾化机对质粒的完整性破坏程度逐渐增加;新型气道内微量雾化机的基因转染效率高于临床普遍使用的机械喷射式雾化机转染效率的(382.1±101.1)倍(P<0.01,n=3)。结论:新型气道内微量雾化机对质粒没有破坏性,能显著增加雾化吸入基因转染效率。为雾化基因治疗提供了一种合适的工具。

关键词: 雾化机基因转染质粒DNA    
Abstract:

Objective: Explore the effect of a new airway miniaturized nebulizer on the plasmid DNA (pDNA) integrity and animals gene transfection efficiency.Methods: In the first experiment, the effect of the new airway miniaturized nebulizer on pDNA integrity was tested.2ml pDNA(20μg/ml) was put into the sample pool of the new airway miniaturized nebulizer and a clinical commonly used jet nubulizer respectively. Aerosol samples were collected at the 1st min, 3rd min, 5th min from the nozzle of the two nebulizers respectively and investigated with agarose gel electrophoresis.In the second experiment, the effect of gene transfection efficiency of the new airway miniaturized nebulizer on animals was studied.3.3μg PEI/pEGFP (polyethylenimine and plasmid DNA of green fluorescent protein complex formation which contain 3.3μg pEGFP) was aerosolized to rats via the new airway miniaturized nebulizer and a clinical commonly used jet nubulizer respectively.Rats were sacrificed 24h after aerosol treatment. The mRNA was abstracted from the lung of those rats, reverse transcribed into cDNA and determined by real-time PCR. PCR products were also investigated with agarose gel electrophoresis.Result: At the 1st min, 3rd min, 5th min, the proportions of integrity pDNA of the new airway miniaturized nebulizer were (99.6±0.7)%,(100±1.2)%,(99.6±0.7)% respectively, and compared with the control group. The result was no significant difference between the two group(P>0.05, n=3). The effect of the new airway miniaturized nebulizer on plasmid DNA can be neglected.At the 1st min, 3rd min, 5th min, the proportions of integrity pDNA of the clinical commonly used jet nubulizer were (70.3±1.5)%, (49.3±1.5)%,(32.7±0.6)% respectively, and compared with the control group. The results was significantly different between the two group(P<0.05, n=3). The proportion of integrity pDNA of the jet nubulizer was decline graduately accompany with time.The new nebulizer yielded 382.1±101.1 fold higher expression levels than the ordinary jet nebulizer(P<0.01, n=3)Conclution: The new airway miniaturized nebulizer provided an excellent protection on the plasmid DNA, increased the efficiency of gene transfection significantly, and provided a suitable device for aerosol gene therapy.

Key words: Nebulizer    Gene transfection    Plasmid DNA    Lung
收稿日期: 2011-11-28 出版日期: 2012-03-25
ZTFLH:  Q78  
基金资助:

全军"十五"攻关课题(01MB001)、中国博士后科学基金(20080441338)、辽宁省自然科学基金(2001101031)、辽宁省博士启动资金(001034)资助项目

通讯作者: 马壮,mzm0404@yahoo.com     E-mail: mzm0404@yahoo.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王虹, 孙文武, 马壮. 气道内微量雾化机对质粒DNA完整性和基因转染效率的影响[J]. 中国生物工程杂志, 2012, 32(03): 63-68.

WANG Hong, SUN Wen-wu, MA Zhuang. Effect of a New Nebulizer on Plasmid DNA Integrity and Gene Transfection. China Biotechnology, 2012, 32(03): 63-68.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I03/63


[1] Griesenbach U, Alton E W. Current status and future directions of gene and cell therapy for cystic fibrosis. BioDrugs, 2011, 25(2):77-88.

[2] Zavorotinskaya T, Tomkinson A, Murphy J E. Treatment of experimental asthma by long-term gene therapy directed against IL-4 and IL-13. Mol Ther, 2003, 7(2):155-162.

[3] Christensen C L, Zandi R, Gjetting T, et al. Specifically targeted gene therapy for small-cell lung cancer. Expert Rev Anticancer Ther, 2009, 9(4):437-452.

[4] Lentz Y K, Worden L R, Anchordoquy T J, et al. Effect of jet nebulization on DNA: Identifying the dominant degradation mechanism and mitigation methods. J Aerosol Sci, 2005, 36:973-990.

[5] Danquah M K, Forde G M. Growth medium selection and its economic impact on plasmid DNA production. J Biosci Bioeng, 2007, 104(6):490-497.

[6] Pathak A, Patnaik S, Gupta K C. Recent trends in non-viral vector-mediated gene delivery. Biotechnol J, 2009, 4(11):1559-1572.

[7] 杨慧瑛, 孙文武, 马壮. 机械喷射式雾化机对质粒DNA完整性的影响及保护性研究. 中国生物工程杂志, 2010, 30(10):44-48. Yang H Y, Sun W W, Ma Z. Effect of Jet Nebulizer on Plasmid DNA Integrity and the Research of Protective Methods. China Biotechnology, 2010, 30(10):44-48.

[8] Lesina E, Dames P, Rudolph C. The effect of CpG motifs on gene expression and clearance kinetics of aerosol administered polyethylenimine (PEI)-plasmid DNA complexes in the lung. J Control Release, 2010, 143(2):243-250.

[9] Jiang H L, Hong S H, Kim Y K, et al. Aerosol delivery of spermine-based poly(amino ester)/Akt1 shRNA complexes for lung cancer gene therapy. Int J Pharm, 2011,420 (2):256-265.

[10] Lentz Y K, Anchordoquy T J, Lengsfeld C S. Rationale for the selection of an aerosol delivery system for gene delivery. J Aerosol Med, 2006, 19(3):372-384.

[11] Sun C, Tang T, Uluda H. Molecular dynamics simulations of PEI mediated DNA aggregation. Biomacromolecules, 2011,12(10):3698-3707.

[12] Goyal R, Tripathi S K, Tyagi S, et al. Linear PEI nanoparticles: efficient pDNA/siRNA carriers in vitro and in vivo. Nanomedicine, 2012,8(2):167-175.

[1] 贠涛,巩玥,谷芃,徐冰冰,李瑾,赵洗尘. 中国与“一带一路”参与国家抗击新冠肺炎疫情的国际科技合作现状与展望[J]. 中国生物工程杂志, 2021, 41(7): 110-121.
[2] 许叶春,柳红,李剑峰,沈敬山,蒋华良. 抗新冠肺炎药物研究进展[J]. 中国生物工程杂志, 2021, 41(6): 111-118.
[3] 陈玉琼,谭文华,刘海峰,陈根. miR-29a通过调控PTEN表达对脂多糖诱导人肺微血管内皮细胞损伤的保护作用研究*[J]. 中国生物工程杂志, 2021, 41(5): 8-16.
[4] 傅桂娥,李瑾,耿佩然,申梦秋,张金倩楠,赵洗尘. 医疗视角下粤港澳大湾区典型城市的新冠肺炎(COVID-19)疫情防控力量比较研究*[J]. 中国生物工程杂志, 2021, 41(12): 125-140.
[5] 武瑞君,李治非,张鑫,濮润,敖翼,孙燕荣. 新冠病毒抗体药物研发进展及展望分析[J]. 中国生物工程杂志, 2020, 40(5): 1-6.
[6] 王猛,宋慧茹,程雨洁,王毅,杨波,胡征. 以核糖体蛋白L7/L12为分子标志物精准检测肺炎链球菌的研究 *[J]. 中国生物工程杂志, 2020, 40(4): 34-41.
[7] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[8] 林福玉,刘金毅,程永庆. 重组人干扰素α1b抗新型冠状病毒的基础和临床研究进展[J]. 中国生物工程杂志, 2020, 40(12): 1-7.
[9] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[10] 张潘红,李莲莲,张秀美,崔家骏,姜银杰. microRNA对肺癌化疗耐药性影响的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 79-84.
[11] 徐作波,李九彬,丁红雷. 猪肺炎支原体检测技术研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 78-83.
[12] 孙思,邱喻兰,颜菊荣,杨静,吴光英,王玲,胥文春. 重组质粒pcDNA3-dnaJ/蛋白DnaJ异源免疫诱导Th1和Th17细胞免疫应答抵抗肺炎链球菌感染 *[J]. 中国生物工程杂志, 2019, 39(12): 9-17.
[13] 代立婷, 吴忠南, 黄翔, 杨杰, 曾慧兰, 王国才, 蒋建伟. 卤地菊乙醇提取物W40单体诱导GLC-82细胞凋亡的分子机制研究[J]. 中国生物工程杂志, 2017, 37(8): 1-7.
[14] 窦一涵, 李映, 赵鹏, 范如婷, 田平芳. 重组肺炎克雷伯氏菌转化甘油为聚3-羟基丙酸[J]. 中国生物工程杂志, 2017, 37(6): 86-92.
[15] 葛林, 刘新宇, WANG Guirong. 人SP-B蛋白转基因小鼠及细菌性肺炎模型的构建[J]. 中国生物工程杂志, 2017, 37(10): 65-71.