Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (10): 65-71    DOI: 10.13523/j.cb.20171009
技术与方法     
人SP-B蛋白转基因小鼠及细菌性肺炎模型的构建
葛林1, 刘新宇2, WANG Guirong3
1. 天津医科大学生物化学与分子生物学系 天津 300070;
2. 天津医科大学代谢病医院内分泌研究所 卫生部激素与发育重点实验室 天津市代谢性疾病重点实验室 天津 300070;
3. 美国纽约州立大学上州医科大学 纽约 13210
Construction of Human SP-B Protein Transgenic Mice and Bacterial Pneumonia Model
GE Lin1, LIU Xin-yu2, WANG Guirong3
1. Tianjin Medical University, Department of Biochemistry and Molecular Biology, Tianjin 300070, China;
2. Key Laboratory of Hormones and Development Ministry of Health, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China;
3. SUNY Upstate Medical University, Department of Surgery, Syracuse NY 13210, USA
 全文: PDF(1292 KB)   HTML
摘要: 目的:构建携带人SP-B蛋白+1580 SNP不同等位基因的转基因小鼠并进行细菌性肺炎模型的造模。方法:利用受精卵原核注射技术将hSP-B基因整合至小鼠染色体上获得F0代小鼠,将其与mSP-B基因敲除鼠进行交配,逐步去除转基因小鼠体内mSP-B基因。利用PCR技术鉴定小鼠基因型,通过测序确定+1580位点的等位基因。将铜绿假单胞菌经支气管灌注接种至小鼠肺内进行细菌性肺炎造模,对照组注射等量灭菌生理盐水。结果:F2代小鼠只表达人SP-B蛋白而不表达鼠SP-B蛋白,蛋白表达量与人肺内含量相近,即为构建成功的转基因小鼠。3个小鼠家系+1580位点等位基因为T,1个家系为C。细菌接种(1×106 CFU/mouse)后24小时,小鼠肺泡内炎症渗出明显,大量中性粒细胞浸润,SP-B蛋白含量明显降低,但不同等位基因间在此条件下无明显差异。结果:成功构建只表达人SP-B蛋白的转基因小鼠模型,细菌性肺炎模型造模成功,为今后进一步研究人SP-B蛋白的生理功能及+1580基因多态性与肺疾病的关系提供了有力的工具。
关键词: SNP细菌性肺炎SP-B蛋白转基因小鼠    
Abstract: Objective:to construct the transgenic mice expressing human SP-B gene with different alleles in +1580 SNP and the bacterial pneumonia model. Methods:The hSP-B gene was integrated into the mouse chromosome to obtain the F0 generation mice by microinjection technology. The mice were mated with mSP-B gene knockout mice to eliminate the mSP-B gene gradually. Using PCR technique to identify the genotype of mice, and to determine the allele of +1580 locus by sequencing. The Pseudomonas aeruginosa was inoculated into the lung of mice to make the model of bacterial pneumonia, and the control group was injected with the same amount of sterile saline. Results:F2 mice expressed human SP-B protein only, and the expression level of SP-B protein was similar to that in human lung. The +1580 locus alleles T was found in 3 mice families and allele C was found in 1 mice family. After infection for 24 hours, the inflammatory exudation in the alveolar of mice was obvious. A large number of neutrophils were observed in mice alveolus. SP-B protein level was significantly reduced, but there was no significant difference between the different alleles. Conclusions:the construction of human SP-B protein expression transgenic mice model and bacterial pneumonia model were successful. The mice will be a powerful tool for the further studies on physiological function of human SP-B protein and the relationship between +1580 gene polymorphism and lung diseases.
Key words: SP-B protein    SNP    Transgenic mice    Bacterial pneumonia
收稿日期: 2017-04-11 出版日期: 2017-10-25
ZTFLH:  Q789  
通讯作者: WANG Guirong,wangg@upstate.edu     E-mail: wangg@upstate.edu
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
葛林
刘新宇
WANG Guirong

引用本文:

葛林, 刘新宇, WANG Guirong. 人SP-B蛋白转基因小鼠及细菌性肺炎模型的构建[J]. 中国生物工程杂志, 2017, 37(10): 65-71.

GE Lin, LIU Xin-yu, WANG Guirong. Construction of Human SP-B Protein Transgenic Mice and Bacterial Pneumonia Model. China Biotechnology, 2017, 37(10): 65-71.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171009        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I10/65

[1] Mazela J, Merritt T A, Gadzinowski J, et al. Evolution of pulmonary surfactants for the treatment of neonatal respiratory distress syndrome and paediatric lung diseases. Acta Paediatrica, 2006,95(9):1036-1048.
[2] Celli B R, Cote C G, Marin J M, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. New England Journal of Medicine, 2004,350(10):1005-1012.
[3] Glasser S W, Korfhagen T R, Weaver W, et al. cDNA and deduced amino acid sequence of human pulmonary surfactant-associated proteolipid SPL (Phe). Proceedings of the National Academy of Sciences, 1987,84(12):4007-4011.
[4] Pilot-Matias T J, Kister S E, Fox J L, et al. Structure and organization of the gene encoding human pulmonary surfactant proteolipid SP-B. DNA, 1989,8(2):75-86.
[5] Akella A, Deshpande S B. Pulmonary surfactants and their role in pathophysiology of lung disorders. Indian Journal of Experimental Biology,2013,51(1):5-22.
[6] Nogee L M, Garnier G, Dietz H, et al. A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds. Journal of Clinical Investigation, 1994,93(4):1860-1863.
[7] Clark H, Clark L S. The genetics of neonatal respiratory disease. Seminars in Fetal and Neonatal Medicine. 2005,10(3):271-282.
[8] Wallot M, Wagenvoort C, Müller K M, et al. Congenital alveolar proteinosis caused by a novel mutation of the surfactant protein B gene and misalignment of lung vessels in consanguineous kindred infants. European Journal of Pediatrics, 1999,158(6):513-518.
[9] Tredano M, van Elburg R M, Kaspers A G, et al. Compound SFTPB 1549C→ GAA (121ins2) and 457delC heterozygosity in severe congenital lung disease and surfactant protein B (SP-B) deficiency. Human Mutation, 1999,14(6):502-509.
[10] Ballard P L, Nogee L M, Beers M F, et al. Partial deficiency of surfactant protein B in an infant with chronic lung disease. Pediatrics, 1995,96(6):1046-1052.
[11] Dunbar A E, Wert S E, Ikegami M, et al. Prolonged survival in hereditary surfactant protein B (SP-B) deficiency associated with a novel splicing mutation. Genetics in Medicine, 2000,7(7):275-282.
[12] Taponen S, Huusko J M, Petäjä-Repo U E, et al. Allele-specific N-glycosylation delays human surfactant protein B secretion in vitro and associates with decreased protein levels in vivo. Pediatric Research, 2013,74(6):646-651.
[13] Quasney M W, Waterer G W, Dahmer M K, et al. Association between surfactant protein B+1580 polymorphism and the risk of respiratory failure in adults with community-acquired pneumonia. Critical Care Medicine, 2004,32(5):1115-1119.
[14] Wang G, Guo X, DiAngelo S, et al. Humanized SFTPA1 and SFTPA2 transgenic mice reveal functional divergence of SP-A1 and SP-A2 formation of tubular myelin in vivo requires both gene products. Journal of Biological Chemistry, 2010,285(16):11998-12010.
[15] Lin Z, Pearson C, Chinchilli V, et al. Polymorphisms of human SP-A, SP-B, and SP-D genes:association of SP-B Thr131Ile with ARDS. Clin Genet, 2000,58(3):181-191.
[16] Cole F S. Surfactant protein B:unambiguously necessary for adult pulmonary function. Am J Physiol Lung Cell Mol Physiol, 2003,285(3):540-542.
[17] Ueno T, Linder S, Na C L, et al. Processing of pulmonary surfactant protein B by napsin and cathepsin H. Journal of Biological Chemistry, 2004,279(16):16178-16184.
[18] Yin X, Meng F, Wang Y, et al. Surfactant protein B deficiency and gene mutations for neonatal respiratory distress syndrome in China Han ethnic population. Int J Clin Exp Pathol, 2013,6(2):267-272.
[19] Sumita Y, Sugiura T, Kawaguchi Y, et al. Genetic polymorphisms in the surfactant proteins in systemic sclerosis in Japanese:T/T genotype at 1580 C/T (Thr131Ile) in the SP-B gene reduces the risk of interstitial lung disease. Rheumatology (Oxford), 2008,47(3):289-291.
[20] Dahmer M K, O'Cain P, Patwari P P, et al. The influence of genetic variation in surfactant protein B on severe lung injury in African American children. Crit Care Med, 2011,39(5):1138-1144.
[21] Wang G, Christensen N D, Wigdahl B, et al. Differences in N-linked glycosylation between human surfactant protein-B variants of the C or T allele at the single-nucleotide polymorphism at position 1580:implications for disease. Biochem J, 2003,369(Pt 1):179-184.
[22] Skropeta D. The effect of individual N-glycans on enzyme activity. Bioorg Med Chem, 2009,17(7):2645-2653.
[23] Moremen K W, Tiemeyer M, Nairn A V. Vertebrate protein glycosylation:diversity, synthesis and function. Nat Rev Mol Cell Biol, 2012,13(7):448-462.
[1] 姜吉喆, 潘航, 乐敏, 章乐. 基于比较基因组学方法的世界范围的犬布鲁氏菌系统发育群研究 *[J]. 中国生物工程杂志, 2020, 40(3): 38-47.
[2] 梁振鑫,刘芳,张玮,刘庆友,李力. 抗p185 erb B2人鼠嵌合抗体ChAb26转基因小鼠乳腺生物反应器的制备与验证 *[J]. 中国生物工程杂志, 2019, 39(8): 40-51.
[3] 韩明明,罗玉萍. 内源CD133 +细胞示踪小鼠模型的制备和鉴定 *[J]. 中国生物工程杂志, 2018, 38(6): 58-62.
[4] 左志宇, 辛灵彪, 杨洁, 王鑫廷. SND1转基因小鼠的构建[J]. 中国生物工程杂志, 2016, 36(4): 97-103.
[5] 易学瑞, 袁有成, 龚亮, 张欣蕊, 李娜, 孔祥平. 8种天然药物与硼替佐米对HBsAg抑制作用及蛋白质组学分析[J]. 中国生物工程杂志, 2015, 35(11): 29-35.
[6] 汤俊明, 赵彦平, 刘奇, 盛青松, 吴黎明, 乔国洪. 构建皮肤组织中特异表达HPV16-E6基因的小鼠模型[J]. 中国生物工程杂志, 2015, 35(10): 27-31.
[7] 秦瑶, 赵鸿彦, 张文航, 王冬梅. 线粒体转录因子A敲低转基因小鼠的研制[J]. 中国生物工程杂志, 2014, 34(7): 44-48.
[8] 蒋世忠, 闫亚彬, 谢飞, 龚秀丽, 黄英, 吕宝忠. 转基因小鼠乳腺上皮细胞的体外培养及其对催乳素反应的研究[J]. 中国生物工程杂志, 2012, 32(03): 20-24.
[9] 马纪, 孙奋勇, 张越, 洪岸. miR-122过表达转基因小鼠质粒构建及其功能验证[J]. 中国生物工程杂志, 2011, 31(9): 28-34.
[10] 刘肖帅, 葛鲁娜, 韩金祥, 常晓天, 朱有名, 王世立. 肽基精氨酸脱亚胺酶4(PADI4)对RA的影响[J]. 中国生物工程杂志, 2011, 31(9): 103-108.
[11] 张景锋, 郭欣政, 卫恒习, 李莉, 张守全. Tet system的调控原理及其在转基因小鼠模型上的应用[J]. 中国生物工程杂志, 2011, 31(11): 90-94.
[12] 惠有为, 夏天, 赵亚玲, 贾静芳. HaSNPV几丁质酶的分离纯化与毒理学研究[J]. 中国生物工程杂志, 2011, 31(02): 43-49.
[13] 郭虹敏 吴晓洁 李想 周艳荣 林艳丽 熊福银 薛世伟 陈红星 陈树林. 表达乙肝病毒受体人ASGPR转基因小鼠的建立[J]. 中国生物工程杂志, 2010, 30(05): 87-91.
[14] 惠有为 赵健 王振虎 夏天. HaSNPV几丁质酶重组蛋白的表达、纯化和复性[J]. 中国生物工程杂志, 2010, 30(02): 77-82.
[15] 许勇, 项佑贵, 严兰珍, 王龙, 徐国江, 费俭, 傅继粱, 王铸钢. hOPG基因启动子驱动报告基因LacZ的转基因小鼠模型的建立[J]. 中国生物工程杂志, 2005, 25(11): 17-20.