Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (4): 78-83    DOI: 10.13523/j.cb.20190410
综述     
猪肺炎支原体检测技术研究进展 *
徐作波1,李九彬2,丁红雷1**()
1 西南大学动物科技学院兽医传染病学实验室 重庆 400715
2 西南大学附属中学 重庆 400700
Research Progress in Mycoplasma hyopneumonia Detection Technology
Zuo-bo XU1,Jiu-bing LI2,Hong-lei DING1**()
1 Laboratory of Veterinary Lemology, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
2 High School Affiliated to Southwest University, Chongqing 400700, China
 全文: PDF(430 KB)   HTML
摘要:

猪支原体肺炎是由猪肺炎支原体(Mycoplasma hyopneumoniae,Mhp)引起的一种存在于世界各地的严重危害养猪业的疾病,严重影响饲料报酬,造成巨大的经济损失。准确、敏感、快速的Mhp检测方法有助于了解Mhp在猪群的流行情况,进而采取相应的预防、治疗和综合防控措施。对国内外Mhp病原学、分子生物学和免疫学检测方法进行了综述,为科技工作者全面了解Mhp检测方法提供参考资料。

关键词: 猪肺炎支原体检测病原分子生物学酶联免疫吸附试验    
Abstract:

Mycoplasmal pneumonia of swine (MPS) is a severe respiratory disease of pig which is caused by Mycoplasma hyopneumoniae (Mhp) worldwide. The disease decreased feed conversion efficiency causing significant economic loss. Accurate, sensitive and quick detection method is much helpful for understanding the prevalence of Mhp in pig farms, and also can improve the preventive and therapeutic measures, and management practice. Etiological, molecular biology, and serological detection methods of Mhp were reviewed. Comprehensive data of Mhp detection methods for scientists was provided.

Key words: Mycoplasma hyopneumoniae    Detection    Pathogen    Molecular biology    ELISA
收稿日期: 2018-10-21 出版日期: 2019-05-08
ZTFLH:  S852.62  
基金资助: * 重庆市社会事业与民生保障科技创新专项(cstc2015shmszx80033);西南大学中央高校基本科研业务费资助项目(XDJK2019F001)
通讯作者: 丁红雷     E-mail: hongleiding@swu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐作波
李九彬
丁红雷

引用本文:

徐作波,李九彬,丁红雷. 猪肺炎支原体检测技术研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 78-83.

Zuo-bo XU,Jiu-bing LI,Hong-lei DING. Research Progress in Mycoplasma hyopneumonia Detection Technology. China Biotechnology, 2019, 39(4): 78-83.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190410        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I4/78

PCR类型 目的基因 检测下限 基因大小(bp) 临床样本类型 参考文献
普通PCR 16S rRNA 4×102个细胞 520 鼻腔分泌物、支气管肺泡灌洗液和肺脏 [11]
16S rRNA 1 000个基因组 200 鼻腔分泌物、支气管肺泡细胞灌洗液和肺组织 [12]
16S rRNA 5CFU 649 鼻拭子 [13]
P36 0.5~50pg DNA 948 气管细支气管拭子、肺匀浆、鼻拭子 [4]
P46 0.5ng DNA 580 气管细支气管拭子、肺匀浆、鼻拭子 [4]
ABC转运体基因 500fg DNA 1 561 气管支气管灌洗液 [15]
巢式PCR MHYP1-03-950重复序列 1个细胞/过滤膜 808 过滤的空气 [18]
16S rRNA 80个细胞 649 气管-支气管灌洗液、鼻拭子 [19]
ABC转运体基因 1fg DNA 706 气管-支气管灌洗液、鼻拭子 [20]
β2-微球蛋白基因 0.5~1fg DNA 240 气管- 支气管灌洗液、支气管肺泡灌洗液 [21]
mhp165 5fg/μl DNA 628 鼻拭子 [23]
多重PCR P36P46 未给出 948和580 气管细支气管拭子、肺匀浆、鼻拭子 [4]
荧光定量PCR ABC转运体基因 1fg DNA 706 支气管拭子 [22]
MHYP1-03-950重复序列 1fg DNA 808 支气管拭子 [22]
mhp165 2.5fg/μl DNA 132 鼻拭子 [23]
mhp183 2.5fg/μl DNA 90 鼻拭子 [23]
P46P97P102 1.3fg/μl DNA 150、101和137 鼻腔、扁桃体、气管和肺组织 [24]
LAMP mhp165 10fg DNA 240 鼻拭子、肺组织 [28]
基因芯片 P46 6.8×103拷贝/μl 213 未给出 [29]
表1  猪肺炎支原体各种PCR 检测技术比较
[1] Maes D, Segales J, Meyns T , et al. Control of Mycoplasma hyopneumoniae, infections in pigs. Vet Microbiol, 2008,126(4):297-309.
doi: 10.1016/j.vetmic.2007.09.008 pmid: 17964089
[2] Maes D, Sibila M, Kuhnert P , et al. Update on Mycoplasma hyopneumoniae infections in pigs: Knowledge gaps for improved disease control. Transbound Emerg Dis, 2018,65(Suppl 1):110-124.
doi: 10.1111/tbed.12677 pmid: 28834294
[3] 华利忠, 邵国青, 周勇岐 . 以疫苗免疫为核心的猪气喘病控制与净化技术. 中国兽药杂志, 2012,46(7):50-53.
doi: 10.3969/j.issn.1002-1280.2012.07.015
Hua L Z, Shao G Q, Zhou Y Q . Control and eradication of Mycoplasma hyopneumoniae based on vaccine immunization. Chinese Journal of Veterinary Drug, 2012,46(7):50-53.
doi: 10.3969/j.issn.1002-1280.2012.07.015
[4] Caron J, Ouardani M, Dea S . Diagnosis and differentiation of Mycoplasma hyopneumoniae and Mycoplasma hyorhinis infections in pigs by PCR amplification of the p36 and p46 genes. J Clin Microbiol, 2000,38(4):1390-1396.
[5] Friis N . A selective medium for Mycoplasma suipneumoniae. Acta Vet Scand, 1971,12(3):454-456.
[6] Friis N F . Some recommendations concerning primary isolation of Mycoplasma suipneumoniae and Mycoplasma flocculare a survey. Nord Vet Med, 1975,27(6):337-339.
[7] 江苏省农业科学研究所畜牧兽医研究室. 猪气喘病病原体-猪肺炎支原体的分离和培养研究. 中国兽医科学, 1978,1:17-20.
Laboratory of Animal Husbandry and Veterinary Medicine , Jiangsu Institute of Agricultural Sciences. Isolation and culture of Mycoplasma hyopneumoniae, pathogen of porcine enzootic pneumonia. Chinese Vetrinary Science, 1978,1:17-20.
[8] Kamminga T, Slagman S J , Bijlsma J J E , et al. Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate. Biotechnol Bioeng, 2017,114(10):2339-2347.
doi: 10.1002/bit.26347 pmid: 28600895
[9] Cook B S, Beddow J G, Manso-Silván L , et al. Selective medium for culture of Mycoplasma hyopneumoniae. Vet Microbiol, 2016,195:158-164.
doi: 10.1016/j.vetmic.2016.09.022 pmid: 5081061
[10] 李石, 李吉力, 周霞 . 猪肺炎支原体生长培养基的筛选. 黑龙江畜牧兽医, 2014,18:61-63.
Li S, Li J L, Zhou X . Screening of growth medium for Mycoplasma hyopneumoniae. Heilongjiang Animal Science and Veterinary Medicine, 2014,18:61-63.
[11] Harasawa R, Koshimizu K, Takeda O , et al. Detection of Mycoplasma hyopneumoniae DNA by the polymerase chain reaction. Mol Cell Probes, 1991,5(2):103-109.
doi: 10.1016/0890-8508(91)90003-3 pmid: 2072931
[12] Stemke G W, Phan R, Young T F , et al. Differentiation of Mycoplasma hyopneumoniae, M. flocculare, and M. hyorhinis on the basis of amplification of a 16S rRNA gene sequence Am J Vet Res, 1994,55(1):81-84.
[13] Mattsson J G, Bergström K, Wallgren P , et al. Detection of Mycoplasma hyopneumoniae in nose swabs from pigs by in vitro amplification of the 16S rRNA gene. J Clin Microbiol, 1995,33(4):893-897.
[14] Stemke G W . Gene amplification (PCR) to detect and differentiate mycoplasmas in porcine mycoplasmal pneumonia. Lett Appl Microbiol, 1997,25(5):327-330.
doi: 10.1046/j.1472-765X.1997.00243.x pmid: 9418066
[15] Blanchard B, Kobisch M, Bové J M , et al. Polymerase chain reaction for Mycoplasma hyopneumoniae detection in tracheobronchiolar washings from pigs. Mol Cell Probes, 1996,10(1):15-22.
doi: 10.1006/mcpr.1996.0003 pmid: 8684372
[16] Baumeister A K, Runge M, Ganter M , et al. Detection of Mycoplasma hyopneumoniae in bronchoalveolar lavage fluids of pigs by PCR. J Clin Microbiol, 1998,36(7):1984-1988.
[17] Stakenborg T, Vicca J, Butaye P , et al. A multiplex PCR to identify porcine mycoplasmas present in broth cultures. Vet Res Commun, 2006,30(3):239-247.
doi: 10.1007/s11259-006-3226-3 pmid: 16437299
[18] Stärk K D C, Nicolet J, Frey J . Detection of Mycoplasma hyopneumoniae by air sampling with a nested PCR assay. Appl Environ Microbiol, 1998,64(2):543-548.
[19] Calsamiglia M, Pijoan C, Trigo A . Application of a nested polymerase chain reaction assay to detect Mycoplasma hyopneumoniae from nasal swabs. J Vet Diagn Invest, 1999,11(3):246-251.
doi: 10.1177/104063879901100307 pmid: 10353356
[20] Verdin E, Saillard C, Labbé A , et al. A nested PCR assay for the detection of Mycoplasma hyopneumoniae in tracheobronchiolar washings from pigs. Vet Microbiol, 2000,76(1):31-40.
doi: 10.1016/S0378-1135(00)00228-5 pmid: 10925039
[21] Kurth K T, Hsu T, Snook E R , et al. Use of a Mycoplasma hyopneumoniae nested polymerase chain reaction test to determine the optimal sampling sites in swine. J Vet Diagn Invest, 2002,14(6):463-469.
doi: 10.1177/104063870201400603 pmid: 12423027
[22] Dubosson C R, Conzelmann C, Miserez R , et al. Development of two real-time PCR assays for the detection of Mycoplasma hyopneumoniae in clinical samples. Vet Microbiol, 2004,102(1-2):55-65.
doi: 10.1016/j.vetmic.2004.05.007 pmid: 15288927
[23] Strait E L, Madsen M L, Minion F C , et al. Real-time PCR assays to address genetic diversity among strains of Mycoplasma hyopneumoniae. J Clin Microbiol, 2008,46(8):2491-2498.
doi: 10.1128/JCM.02366-07 pmid: 2519509
[24] Marois C, Dory D, Fablet C , et al. Development of a quantitative real-time TaqMan PCR assay for determination of the minimal dose of Mycoplasma hyopneumoniae strain 116 required to induce pneumonia in SPF pigs. J Appl Microbiol, 2010,108(5):1523-1533.
doi: 10.1111/jam.2010.108.issue-5
[25] Arsenakis I, Panzavolta L, Michiels A , et al. Efficacy of Mycoplasma hyopneumoniae vaccination before and at weaning against experimental challenge infection in pigs. BMC Vet Res, 2016,12:63.
doi: 10.1186/s12917-016-0685-9 pmid: 4812620
[26] Arsenakis I, Michiels A , Del Pozo Sacristán R, et al. Mycoplasma hyopneumoniae vaccination at or shortly before weaning under field conditions: a randomised efficacy trial. Vet Rec, 2017,181(1):19.
doi: 10.1136/vr.104075 pmid: 28601840
[27] Notomi T, Okayama H, Masubuchi H , et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res, 2000,28(12):E63.
doi: 10.1097/RLU.0b013e3181f49ac7 pmid: 10871386
[28] Li J H, Minion F C, Petersen A C , et al. Loop-mediated isothermal amplification for rapid and convenient detection of Mycoplasma hyopneumoniae. World J Microbiol Biotechnol, 2013,29(4):607-616.
doi: 10.1007/s11274-012-1216-x pmid: 23184577
[29] 保雨 . 猪呼吸道疾病综合征六种病原基因芯片检测方法的建立. 重庆: 西南大学, 2016.
Bao Y . Development and preliminary application of oligonucleotide microarray for simultaneous detection of six pathogens causing porcine respiratory disease complex. Chongqing: Southwest University, 2016.
[30] Bereiter M, Young T F, Joo H S , et al. Ross evaluation of the ELISA and comparison to the complement fixation test and radial immunodiffusion enzyme assay for detection of antibodies against Mycoplasma hyopneumoniae in swine serum. Vet Microbiol, 1990,25(2-3):177-192.
doi: 10.1016/0378-1135(90)90075-7 pmid: 2126409
[31] Roberts D H, Little T W . Serological studies in pigs with Mycoplasma hyopneumoniae. J Comp Pathol, 1970,80(2):211-220.
doi: 10.1016/0021-9975(70)90087-3 pmid: 4988847
[32] Okada M, Asai T, Futo S , et al. Serological diagnosis of enzootic pneumonia of swine by a double-sandwich enzyme-linked immunosorbent assay using a monoclonal antibody and recombinant antigen (P46) of Mycoplasma hyopneumoniae. Vet Microbiol, 2005,105(3-4) : 251-259.
doi: 10.1016/j.vetmic.2004.11.006 pmid: 15708823
[33] Fano E, Pijoan C, Dee S , et al. Longitudinal assessment of two Mycoplasma hyopneumoniae enzyme-linked immunosorbent assays in challenged and contact-exposed pigs. J Vet Diag Invest, 2012,24(2):383-387.
doi: 10.1177/1040638711434942 pmid: 22379055
[34] Feng Z, Bai Y, Yao J , et al. Use of serological and mucosal immune responses to Mycoplasma hyopneumoniae antigens P97R1, P46 and P36 in the diagnosis of infection. Vet J, 2014,202(1):128-133.
doi: 10.1016/j.tvjl.2014.06.019 pmid: 25066030
[35] Feng Z, Shao G, Liu M , et al. Development and validation of a SIgA-ELISA for the detection of Mycoplasma hyopneumoniae infection. Vet Microbiol, 2010,143(2-4):410-416.
doi: 10.1016/j.vetmic.2009.11.038 pmid: 20053508
[36] Liu M, Du G, Zhang Y , et al. Development of a blocking ELISA for detection of Mycoplasma hyopneumoniae infection based on a monoclonal antibody against protein P65. J Vet Med Sci, 2016,78(8):1319-1322.
doi: 10.1292/jvms.15-0438
[37] Pietersa M, Danielsa J, Rovira A . Comparison of sample types and diagnostic methods for in vivo detection of Mycoplasma hyopneumoniae during early stages of infection. Vet Microbiol, 2017,203:103-109.
doi: 10.1016/j.vetmic.2017.02.014
[1] 徐文娟,宋丹,陈丹,龙辉,陈禹保,龙峰. 基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 67-74.
[2] 康可人,袁强,梁飞敏,伍丽贤. 苄非他明人工抗原合成[J]. 中国生物工程杂志, 2021, 41(7): 58-65.
[3] 袁博鑫,吴昊,闫春晓,路娟娥,魏振平,乔建军,阮海华. 病原细菌效应蛋白靶向宿主细胞核研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 81-90.
[4] 陈晨,胡劲超,曹姗姗,门冬. 新型冠状病毒抗原快速检测研发现状及展望*[J]. 中国生物工程杂志, 2021, 41(6): 119-128.
[5] 马巧妮,王萌,朱兴全. 重组酶介导扩增技术及其在病原微生物快速检测中的应用进展*[J]. 中国生物工程杂志, 2021, 41(6): 45-49.
[6] 邵映芝,车鉴,程驰,江志阳,薛闯. 分子生物学方法提高电活性微生物胞外电子传递效率的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 50-59.
[7] 李帅鹏,任和,安展飞,杨艳坤,白仲虎. 血栓调节蛋白化学发光免疫分析检测方法的建立*[J]. 中国生物工程杂志, 2021, 41(4): 30-36.
[8] 张雪洁,汤家宝,李廷栋,葛胜祥. 单分子免疫检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 47-54.
[9] 连将儒,马伟芳. DNA水凝胶应用于环境样品快速检测的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 107-115.
[10] 周紫卉,刘晓娴,黄昊,肖瑞,祁克宗,王升启. 基于纳米信号标签的表面增强拉曼散射在病原菌检测中的应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 70-77.
[11] 张正燕,陈钰,宋丽杰,苏政权,张海燕. 场效应晶体管生物传感器在生物医学检测中的应用研究进展*[J]. 中国生物工程杂志, 2021, 41(10): 73-88.
[12] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[13] 贾小梅,倪莉,罗洪艳,丁红雷,王豪举. 猪多杀性巴氏杆菌检测技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 49-54.
[14] 黄昭鸿,黄运红,黄艳梅,龙中儿,山珊. 分型检测致泻性大肠埃希氏菌PCR技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 82-90.
[15] 张玲梅,王豪举. 猪链球菌检测技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 84-91.