Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (5): 125-131    DOI: 10.13523/j.cb.20160518
综述     
植物miRNA启动子研究进展
陈敏, 陈慧, 包海, 黄鹏, 王延伟
北京林业大学生物科学与技术学院 林木育种国家工程实验室 林木花卉遗传育种教育部重点实验室 国家林业局树木花卉育种与生物工程重点开放实验室 北京 100083
Advances in the Research of miRNA Promoters in Plants
CHEN Min, CHEN Hui, BAO Hai, HUANG Peng, WANG Yan-wei
National Engineering Laboratory for Tree Breeding, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
 全文: PDF(467 KB)   HTML
摘要:

MicroRNA(miRNA)是广泛存在于植物基因组中的一类非编码小分子RNA,长度为20~24个核苷酸(nucleotides,nt),作为一类重要的负调控因子,广泛参与植物的生长发育和逆境胁迫响应的调控。真核生物启动子是基因表达不可缺少的重要调控元件,包含转录起始位点(transcription start sites,TSS)、TATA框(TATA box)和上游的顺式作用元件。miRNA基因上游启动子与植物miRNA的组织、发育时期和胁迫诱导的表达特异性密切相关,而研究植物miRNA基因的启动子是揭示miRNA特异性表达的分子基础。因此,有必要系统阐述miRNA启动子的特点、核心元件和顺式作用元件的鉴定方法及植物中miRNA启动子研究的最新进展,进而分析植物miRNA启动子研究中存在的问题,为探讨miRNA介导的植物基因表达调控分子机制提供参考。

关键词: 启动子顺式作用元件miRNA植物    
Abstract:

MicroRNAs (miRNAs) are a class of 20~24 nucleotides (nt) non-coding small RNAs with wide distribution in plant genomes. As one of the most important post-transcriptional regulators, miRNAs play a key role in gene expression and stress responses of plants through cleavage or translational repression by complete or partial complementarity to target mRNAs. MIRNA genes are generally known to be transcribed in the nucleus by RNA polymerase II (Pol II) into a primary miRNA with two following continuous cleavages by Dicer-like 1 to produce a precursor miRNA and a miRNA:miRNA star duplex. Promoters are indispensable components involved in gene expression and contain transcription start sites (TSS), TATA boxes and upstream cis-acting elements. It is known that the promoters of miRNAs are important in regulating the expression of miRNA in specific plant tissues, development stages, biotic and abiotic stress responses of plants. As a consequence, investigations on promoters of MIRNA genes are fundamentally important to reveal the molecule mechanism of spatial and temporal expression of miRNAs and will be helpful to reveal the function of miRNAs involved in the biological processes of plants. Consequently, it is highly indispensable to review and analyze the characteristics of miRNA promoters, identification methods of miRNA core promoters and cis-acting elements. Furthermore, the advances of researches on miRNA promoters of plants such as Arabidopsis and rice, the possible problems and prospects of miRNA promoters investigations were also discussed to provide insights into the evaluation of miRNA-mediated gene regulation mechanism.

Key words: Promoter    Cis-acting elements    miRNA    Plant
收稿日期: 2015-12-11 出版日期: 2016-01-26
ZTFLH:  Q78  
基金资助:

国家自然科学基金(J1103516,31200511,31470668)资助项目

通讯作者: 王延伟     E-mail: ywwang@bjfu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈敏
陈慧
包海
黄鹏
王延伟

引用本文:

陈敏, 陈慧, 包海, 黄鹏, 王延伟. 植物miRNA启动子研究进展[J]. 中国生物工程杂志, 2016, 36(5): 125-131.

CHEN Min, CHEN Hui, BAO Hai, HUANG Peng, WANG Yan-wei. Advances in the Research of miRNA Promoters in Plants. China Biotechnology, 2016, 36(5): 125-131.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160518        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I5/125

[1] Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.
[2] German M A, Pillay M, Jeong D H, et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nature Biotechnology, 2008, 26(8): 941-946.
[3] Lu T, Cui L, Zhou Y, et al. Transcriptome-wide investigation of circular RNAs in rice. RNA, 2015, 21(12): 2076-2087.
[4] Han R, Jian C, Lv J, et al. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.). BMC Genomics, 2014, 15: 289.
[5] Barros-Carvalho G A, Paschoal A R, Marcelino-Guimaraes F C, et al. Prediction of potential novel microRNAs in soybean when in symbiosis. Genetics and Molecular Research, 2014, 13(4): 8519-8529.
[6] Long R C, Li M N, Kang J M, et al. Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula. Physiologia Plantarum, 2015, 154(1): 13-27.
[7] Ren Y, Sun F, Hou J, et al. Differential profiling analysis of miRNAs reveals a regulatory role in low N stress response of Populus. Functional & Integrative Genomics, 2015, 15(1): 93-105.
[8] Chen L N, Dong H P, Huang K X, et al. Transcriptomic analyses of nitrogen assimilation processes in a Chinese strain of Aureococcus anophagefferens. Genomics Data, 2015, 5: 344-345.
[9] Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425(6956): 415-419.
[10] Zeng Y, Wagner E J, Cullen B R. Both natural and designed microRNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Molecular Cell, 2002, 9(6): 1327-1333.
[11] Zeng Y, Yi R, Cullen B R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(17): 9779-9784.
[12] Carrington J C, Ambros V. Role of microRNAs in plant and animal development. Science, 2003, 301(5631): 336-338.
[13] Hirsch J, Lefort V, Vankersschaver M, et al. Characterization of 43 non-protein-coding mRNA genes in Arabidopsis, including the MIR162a-derived transcripts. Plant Physiology, 2006, 140(4): 1192-1204.
[14] Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell, 2004, 16(8): 2001-2019.
[15] Wang X J, Reyes J L, Chua N H, et al. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biology, 2004, 5(9): R65.
[16] Chiou T J, Aung K, Lin S I, et al. Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. The Plant Cell, 2006, 18(2): 412-421.
[17] Schauer S E, Jacobsen S E, Meinke D W, et al. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends in Plant Science, 2002, 7(11): 487-491.
[18] Chen S, Lesnik E A, Hall T A, et al. A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. Biosystems, 2002, 65(2-3): 157-177.
[19] Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 2004, 14(6): 787-799.
[20] Zhou X, Wang G, Sutoh K, et al. Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2008, 1779(11): 780-788.
[21] Fujii H, Chiou T J, Lin S I, et al. A miRNA involved in phosphate-starvation response in Arabidopsis. Current Biology, 2005, 15(22): 2038-2043.
[22] Lu S, Sun Y H, Chiang V L. Stress-responsive microRNAs in Populus. The Plant Journal, 2008, 55(1): 131-151.
[23] Zhao B, Liang R, Ge L, et al. Identification of drought-induced microRNAs in rice. Biochemical and Biophysical Research Communications, 2007, 354(2): 585-590.
[24] Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 2006, 312(5772): 436-439.
[25] Fahlgren N, Howell M D, Kasschau K D, et al. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One, 2007, 2(2): e219.
[26] Lu S, Sun Y H, Amerson H, et al. MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. The Plant Journal, 2007, 51(6): 1077-1098.
[27] Usha S, Jyothi M N, Sharadamma N, et al. Identification of microRNAs and their targets in Finger millet by high throughput sequencing. Gene, 2015, 574(2): 210-216.
[28] Morton T, Petricka J, Corcoran D L, et al. Paired-end analysis of transcription start sites in Arabidopsis reveals plant-specific promoter signatures. The Plant Cell, 2014, 26(7): 2746-2760.
[29] Hieno A, Naznin H A, Hyakumachi M, et al. ppdb: plant promoter database version 3.0. Nucleic Acids Research, 2014, 42(Database issue): D1188-D1192.
[30] Yamamoto Y Y, Yoshitsugu T, Sakurai T, et al. Heterogeneity of Arabidopsis core promoters revealed by high-density TSS analysis. The Plant Journal, 2009, 60(2): 350-362.
[31] Kumari S, Ware D. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots. PLoS One, 2013, 8(10): e79011.
[32] Liu Y, Wei L, Batzoglou S, et al. A suite of web-based programs to search for transcriptional regulatory motifs. Nucleic Acids Research, 2004, 32(Web Server issue): W204-W207.
[33] Xie Z, Allen E, Fahlgren N, et al. Expression of Arabidopsis MIRNA genes. Plant Physiology, 2005, 138(4): 2145-2154.
[34] Megraw M, Baev V, Rusinov V, et al. MicroRNA promoter element discovery in Arabidopsis. RNA, 2006, 12(9): 1612-1619.
[35] Devi S J, Madhav M S, Kumar G R, et al. Identification of abiotic stress miRNA transcription factor binding motifs (TFBMs) in rice. Gene, 2013, 531(1): 15-22.
[36] Zeng H Q, Zhu Y Y, Huang S Q, et al. Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L.). Journal of Plant Physiology, 2010, 167(15): 1289-1297.
[37] Goodstein D M, Shu S, Howson R, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research, 2012, 40(Database issue): D1178-D1186.
[38] Han Y Q, Hu Z, Zheng D F, et al. Analysis of promoters of microRNAs from a Glycine max degradome library. Journal of Zhejiang University Science B, 2014, 15(2): 125-132.
[39] Zhao X, Zhang H, Li L. Identification and analysis of the proximal promoters of microRNA genes in Arabidopsis. Genomics, 2013, 101(3): 187-194.
[40] Devi S J, Madhav M S, Kumar G R, et al. Identification of abiotic stress miRNA transcription factor binding motifs (TFBMs) in rice. Gene, 2013, 531(1): 15-22.
[41] Zhao X, Li L. Comparative analysis of microRNA promoters in Arabidopsis and rice. Genomics, Proteomics & Bioinformatics. 2013, 11(1): 56-60.
[42] Kanjanawattanawong S, Tangphatsornruang S, Triwitayakorn K, et al. Characterization of rubber tree microRNA in phytohormone response using large genomic DNA libraries, promoter sequence and gene expression analysis. Molecular Genetics and Genomics, 2014, 289(5): 921-933.
[43] Higo K, Ugawa Y, Iwamoto M, et al. PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Research, 1998, 26(1): 358-359.
[44] Rombauts S, Dehais P, Van Montagu M, et al. PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Research, 1999, 27(1): 295-296.
[45] Okumura T, Makiguchi H, Makita Y, et al. Melina II: a web tool for comparisons among several predictive algorithms to find potential motifs from promoter regions. Nucleic Acids Research, 2007, 35(Web Server issue): W227-W231.
[46] Lescot M, Dehais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1): 325-327.
[47] Zhou M, Sun J, Wang Q H, et al. Genome-wide analysis of clustering patterns and flanking characteristics for plant microRNA genes. FEBS Journal, 2011, 278(6): 929-940.
[48] Schoof H, Ernst R, Nazarov V, et al. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource for plant genomics. Nucleic Acids Research, 2004, 32(Database issue): D373-D376.
[49] Wang Y, Hindemitt T, Mayer K F. Significant sequence similarities in promoters and precursors of Arabidopsis thaliana non-conserved microRNAs. Bioinformatics, 2006, 22(21): 2585-2589.

[1] 刘旭霞,杨安珂. 美国SECURE规则评析及其对中国的启示[J]. 中国生物工程杂志, 2021, 41(9): 126-135.
[2] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[3] 唐德平,邢梦洁,宋文涛,姚慧慧,毛爱红. microRNA治疗在癌症及其他疾病中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 64-73.
[4] 卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.
[5] 朱亚鑫, 段艳婷, 高宇豪, 王籍阅, 张晓梅, 张晓娟, 徐国强, 史劲松, 许正宏. 不同D/L单体比γ-聚谷氨酸的合成与调控[J]. 中国生物工程杂志, 2021, 41(1): 1-11.
[6] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[7] 玄美娟,张晓云,高莹,高丽影,吴佳婧,马梅,王艳梅,寇航,路福平,黎明. 大肠杆菌糖酵解途径和三羧酸循环启动子的表征及其应用 *[J]. 中国生物工程杂志, 2020, 40(6): 20-30.
[8] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[9] 陈雪艳,张娜,陈娟,杨艳红,张巨峰. Hsa-miR-411-3P对胃癌细胞作用功能及相关分子机制的研究 *[J]. 中国生物工程杂志, 2020, 40(4): 1-9.
[10] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[11] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.
[12] 史超硕,李登科,曹雪,袁航,张钰文,于江悦,路福平,李玉. 两个不同启动子及其组合对碱性蛋白酶AprE异源表达的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 17-23.
[13] 黄宇,黄书婷,张夕梅,刘堰. 稀有鮈鲫HSP70基因启动子的克隆及功能分析[J]. 中国生物工程杂志, 2019, 39(10): 9-16.
[14] 左正三,孙小曼,任路静,黄和. 微藻生产油脂培养新技术 *[J]. 中国生物工程杂志, 2018, 38(7): 102-109.
[15] 李亚芳,赵颖慧,刘赛宝,王伟,曾为俊,王金泉,陈洪岩,孟庆文. 鸡OV启动子表达HA对禽流感病毒攻击提供完全保护 *[J]. 中国生物工程杂志, 2018, 38(7): 67-74.