Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (3): 49-55    DOI: 10.13523/j.cb.20150307
研究报告     
过量表达钝齿棒杆菌柠檬酸合酶编码基因prpC2对L-精氨酸合成的影响
房战1, 徐美娟1, 饶志明1, 满在伟1, 许正宏2, 耿燕2, 陆茂林3
1. 江南大学工业生物技术教育部重点实验室 无锡 214122;
2. 江南大学药学院 无锡 214122;
3. 江苏省微生物研究所有限公司 无锡 214063
Cloning, Expressing of the prpC2 Gene Encoding Citrate Synthase from Corynebacterium crenatum and Its Effect on L-arginine Synthesis
FANG Zhan1, XU Mei-juan1, RAO Zhi-ming1, MAN Zai-wei1, XU Zheng-hong2, GENG Yan2, LU Mao-lin3
1. The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
2. School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China;
3. Jiangsu Institute of Microbiology Corporation Limited, Wuxi 214063, China
 全文: PDF(571 KB)   HTML
摘要:

钝齿棒杆菌(Corynebacterium crenatum)SYPA5-5是诱变选育的一株高产精氨酸菌株.柠檬酸合酶作为TCA途径的关键酶,对细胞胞内氨基酸代谢流调节有重要作用.在钝齿棒杆菌SYPA5-5中过量表达同源的柠檬酸合酶(citrate synthase)基因 prpC2 ,研究其对精氨酸及副产物合成的影响.重组菌C. crenatum SYPA5-5/pDXW-10-prpC2 胞内柠檬酸合酶比酶活提高了5.37倍,使L-精氨酸产量在5L发酵罐中达到44.7g/L,与对照相比提高了23.1%.同时,有机酸测定分析TCA循环的精氨酸前体柠檬酸及异柠檬酸的量有所提高,且赖氨酸合成前体草酰乙酸量减少,氨基酸测定分析L-精氨酸发酵中最主要的副产物L-赖氨酸浓度由原来的5.96g/L降到1.21g/L,降低了80%.

关键词: L-精氨酸钝齿棒杆菌柠檬酸合酶发酵    
Abstract:

Corynebacterium crenatum SYPA5-5 is an L-arginine high-producing industrial strain of mutation breeding. The role of citrate synthase in L-arginine biosynthesis was investigated by overexpressing the citrate synthase (prpC2) gene in C. crenatum SYPA5-5. The resultant 5.37-fold increase in intracellular citrate synthase activity was achieved in the prpC2-overexpressing strain C. crenatum SYPA5-5/pDXW-10-prpC2 . The recombinant strain enhanced the L-arginine yield to 44.7g/L by about 23.1% in 5L fermenter, as compared to the control, with affecting glucose depletion rate slightly. While the L-arginine yield increased in the prpC2-overexpressing strain, the L-lysine yield, the most primary by-product formation during L-arginine fermentation, decreased to 1.21g/L from the original concentration 5.96g/L, correlating with an increase in the tricarboxylic acid cycle (TCA) intermediates (citrate and isocitrate) and an increase in the activity of citrate synthase.

Key words: L-arginine    Corynebacterium crenatum    Citrate synthase    Fermentation
收稿日期: 2014-12-31 出版日期: 2015-03-25
ZTFLH:  Q78  
基金资助:

国家"973"计划(2012CB725202),国家"863"计划(2012AA022102),国家自然科学青年基金(31300028),教育部重点研究项目(113033A),江苏省青年自然科学基金(BK20130137),中央高校基本科研业务费专项资金(JUSRP51306A)资助项目

通讯作者: 饶志明;陆茂林     E-mail: raozhm@jiangnan.edu.cn;lumaolin@jsim.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

房战, 徐美娟, 饶志明, 满在伟, 许正宏, 耿燕, 陆茂林. 过量表达钝齿棒杆菌柠檬酸合酶编码基因prpC2对L-精氨酸合成的影响[J]. 中国生物工程杂志, 2015, 35(3): 49-55.

FANG Zhan, XU Mei-juan, RAO Zhi-ming, MAN Zai-wei, XU Zheng-hong, GENG Yan, LU Mao-lin. Cloning, Expressing of the prpC2 Gene Encoding Citrate Synthase from Corynebacterium crenatum and Its Effect on L-arginine Synthesis. China Biotechnology, 2015, 35(3): 49-55.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150307        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I3/49


[1] Lu C D. Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl Microbiol Biotechnol, 2006, 70 (3):261-272.

[2] Utagawa T. Production of arginine by fermentation. J Nutr, 2004, 134(10 suppl):2854-2867.

[3] Xu M, Rao Z, Xu H, et al. Enhanced production of L-arginine by expression of vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum. Appl Biochem Biotechnol, 2011, 163 (6):707-719.

[4] 卢妍, 饶志明, 徐美娟, 等. 钝齿棒杆菌丙酮酸激酶的克隆表达及其对精氨酸合成的扰动影响. 中国生物工程杂志, 2014, 34 (3):48-55. Lu Y, Rao Z M, Xu M J, et al. Cloning, expression of the pyruvate kinase gene from Corynebacterium crenatum and its effect on L-arginine synthesis. China Biotechnology, 2014, 34 (3):48-55.

[5] 刘飞. 钝齿棒杆菌N-乙酰谷氨酸激酶编码基因argB的克隆表达研究. 无锡:江南大学,生物工程学院, 2008. Liu F. Cloning and expression of N-acetylglutamate kinase gene from Corynebacterium crenatum. Wuxi:Jiangnan University School of Biotechnology, 2008.

[6] 饶志明, 徐美娟, 陆元修, 等. 钝齿棒杆菌精氨酸琥珀酸酶编码基因argH的克隆表达及其重组菌发酵产精氨酸研究. 中国生物工程杂志, 2010, 30 (9):49-55. Rao Z M, Xu M J, Lu Y X, et al. Clong, expression and analysis of the argH gene encoding argininosuccinate lyase from Corynebacterium crenatum. China Biotechnology, 2010, 30 (9):49-55.

[7] 徐美娟, 张显, 饶志明, 等. 钝齿棒杆菌N-乙酰鸟氨酸转氨酶的克隆表达分析及其重组菌的精氨酸发酵. 生物工程学报, 2011, 27 (7):1013-1023. Xu M J, Zhang X, Rao Z M, et al. Cloning, expression and characterization of N-Acetylornithine aminotransferase from Corynebacterium crenatum and its effects on L-arginine fermentation. Chinese Journal of Biotechnology, 2011, 27 (7):1013-1023.

[8] Xu M J, Rao Z M, Yang J, et a1. Heterologous and homologous expression of the arginine biosynthetic argC~H cluster from Corynebacterium crenatum for improvement of L-arginine production. J Ind Microbiol Biotechnol, 2012, 39 (3):495-502.

[9] Xu M J, Rao Z M, Dou W F, et a1. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production. Amino Acids, 2012, 43 (1):255-266.

[10] Becker J, Klopprogge C, Schroder H, et al. Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum. Appl Environ Microbiol, 2009, 75 (24):7866-7869.

[11] Marx A, Striegel K, de Graaf A A, et al. Response of the central metabolism of Corynebacterium glutamicum to different flux burdens. Biotechnol Bioeng, 1997, 56 (2):168-180.

[12] Wiegand G, Remington S J. Citrate synthase: structure, control, and mechanism. Annu Rev Biophys Biophys Chem, 1986, 15:97-117.

[13] Radmacher E, Eggeling L. The three tricarboxylate synthase activities of Corynebacterium glutamicum and increase of L-lysine synthesis. Appl Microbiol Biotechnol, 2007, 76 (3):587-595.

[14] Buch A D, Archana G, Kumar G N. Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene. Microbiol, 2009, 155(8):2620-2629.

[15] Wittmann C, Heinzle E. Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of Lysine-producing corynebacteria. Appl Environ Microbiol, 2002, 68 (12):5843-5859.

[16] Tosaka O, Yoshihara Y, Ikeda S, et al. Production of L-lysine by fluoropyruvate-sensitive mutants of Brevibacterium lactofermentum. Agric BioL Chem, 1985, 49 (5):1305-1312

[17] Chen N, Du J, Liu H, et al. Elementary mode analysis and metabolic flux analysis of L-glutamate biosynthesis by Corynebacterium glutamicum. Ann Microbiol, 2009, 59 (2):317-322.

[18] Kirchner O, Tauch A. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol, 2003, 104 (1/3):287-299.

[19] Yin L, Hu X, Xu D, et al. Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum. Metab Eng, 2012, 14 (5):542-550.

[20] 王镜岩, 沈同. 生物化学. 第三版. 北京: 高等教育出版社, 2001:78-278. Wang J Y, Shen T. Biochemistry. 3ed. Beijing: High Education Press, 2001:78-278.

[21] 徐美娟. 钝齿棒杆菌SYPA5-5发酵产L-精氨酸的代谢工程改造. 无锡: 江南大学, 生物工程学院, 2012. Xu M J. Metabolic engineering of Corynebacterium crenatum SYPA5-5 for the L-arginine production. Wuxi: Jiangnan University, College of Bioteehnology, 2012.

[22] Ohnishi J, Hayashi M, Mitsuhashi S, et al. Efficient 40℃ fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol, 2003, 62 (1):69-75.

[23] Radmacher E, Eggeling L. The three tricarboxylate synthase activities of Corynebacterium glutamicum and increase of L-lysine synthesis. Appl Microbiol Biotechnol, 2007, 76 (3):587-595.

[24] Shiio I, Ozaki H, Ujigawa-Takeda K. Production of aspartic acid and lysine by citrate synthase mutants of Brevibacterium flavum. Agric Biol Chem, 1982, 46 (1):101-107.

[25] Marx A, Striegel K, de Graaf AA, et al. Response of the central metabolism of Corynebacterium glutamicum to different flux burdens. Biotechnol Bioeng, 1997, 56 (2):168-180.

[1] 高寅岭,张凤娇,赵贵众,张宏森,王风芹,宋安东. 衣康酸发酵研究进展[J]. 中国生物工程杂志, 2021, 41(5): 105-113.
[2] 杨娜,吴群,徐岩. 解淀粉芽孢杆菌合成surfactin的发酵策略优化 *[J]. 中国生物工程杂志, 2020, 40(7): 51-58.
[3] 王泽建,栗波,王萍,张琴,杭海峰,梁剑光,庄英萍. 葡萄糖和麦芽糖碳源底物对粪产碱杆菌合成凝胶多糖的胞内代谢流影响*[J]. 中国生物工程杂志, 2020, 40(5): 30-39.
[4] 王蒙,张全,高慧鹏,关浩,曹长海. 生物发酵法制备木糖醇的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 144-153.
[5] 王宝石,谭凤玲,李林波,李志刚,孟丽,邱立友,张明霞. 生物处理策略改善麸皮酚类化合物的生物可及性*[J]. 中国生物工程杂志, 2020, 40(12): 88-94.
[6] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[7] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[8] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.
[9] 任莉琼,吴敬,陈晟. 共表达N-乙酰转移酶提高Aspergillus nidulans α-葡糖苷酶在毕氏酵母中的表达研究 *[J]. 中国生物工程杂志, 2019, 39(10): 75-81.
[10] 黄燕,孙益荣,吴敬,宿玲恰. 重组Humicola insolens角质酶的高密度发酵优化 *[J]. 中国生物工程杂志, 2019, 39(1): 63-70.
[11] 赵俊杰,张龙,王靓,陈旭升,毛忠贵. 具有双重抗生素抗性的ε-聚赖氨酸高产菌株选育及生理特性 *[J]. 中国生物工程杂志, 2018, 38(8): 59-68.
[12] 舒群峰,徐美娟,李静,张显,杨套伟,许正宏,饶志明. 钝齿棒杆菌中异源表达N-乙酰鸟氨酸脱乙酰基酶合成L-鸟氨酸的研究 *[J]. 中国生物工程杂志, 2018, 38(7): 29-39.
[13] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[14] 樊亚超,张霖,李晓姝,王鹏翔,姚新武,乔凯. Klebsiella pneumoniae CICC10011发酵产2,3-丁二醇的工艺研究[J]. 中国生物工程杂志, 2018, 38(2): 68-74.
[15] 程丽娜,陆海燕,曲淑玲,张轶群,丁娟娟,邹少兰. 微生物发酵法生产环磷酸腺苷研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 102-108.