Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (2/3): 95-103    DOI: 10.13523/j.cb.2209073
综述     
生物大分子相分离在疾病中的作用*
周雪媛,杜和康,芦增增,郑健培,陈骐**()
福建省天然免疫生物学重点实验室 福建师范大学南方生物医学研究中心 福州 350117
The Role of Biomacromolecule Phase Separation in Diseases
ZHOU Xue-yuan,DU He-kang,LU Zeng-zeng,ZHENG Jian-pei,CHEN Qi**()
Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, College Town, Fuzhou 350117, China
 全文: PDF(1575 KB)   HTML
摘要:

细胞为了维持正常的生理活动进化出膜系统,使各种各样的活动能在特定的空间、时间上高效有序的发生。膜系统参与物质运输、信号传递、能量代谢等过程已被广泛了解,但与无膜区室组装和功能相关的分子细节尚未研究透彻。生物大分子通过相分离在细胞内形成多种无膜区室, 如核仁、中心体、应激颗粒等,这些无膜区室被统称为生物分子凝聚体。作为一种细胞生化反应的聚集分离机制,相分离在自然界中普遍存在,并广泛参与信号转导、基因转录调控等多种重要的生理过程。而异常的相分离与许多人类疾病密切相关,如神经退行性疾病、癌症及传染性疾病等。通过介绍相分离形成的细胞结构及功能、相分离发生的机制,进一步阐述相分离在疾病发生发展中的作用。

关键词: 相分离膜系统无膜区室生物分子凝聚体    
Abstract:

In order to maintain normal physiological activities, cells have evolved a membrane system, which enables various activities to occur efficiently and in an orderly manner in a specific space and time. The involvement of membrane system in material transport, signal transmission, energy metabolism and other processes has been widely understood, but the molecular details related to the assembly and function of membrane-free compartments have not been thoroughly studied. Biological macromolecules form a variety of membrane-free compartments in cells through phase separation, such as nucleolus, centrosome, and stress particles, which are collectively referred to as biomolecular condensates. As a mechanism of aggregation and separation of cellular biochemical reactions, phase separation is ubiquitous in nature and widely involved in many important physiological processes such as signal transduction and gene transcription regulation. The abnormal phase separation is closely related to many human diseases, such as neurodegenerative diseases, cancer and infectious diseases. By introducing the cellular structure and function of phase separation and its mechanism, this paper will further elaborate the role of phase separation in the occurrence and development of diseases.

Key words: Phase separation    Membrane system    Membrane-free compartments    Biomolecular condensates
收稿日期: 2022-09-27 出版日期: 2023-03-31
ZTFLH:  Q819  
基金资助: *福建省高校产学合作项目(2021N5003)
通讯作者: **陈骐     E-mail: nfsw@fjnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周雪媛
杜和康
芦增增
郑健培
陈骐

引用本文:

周雪媛, 杜和康, 芦增增, 郑健培, 陈骐. 生物大分子相分离在疾病中的作用*[J]. 中国生物工程杂志, 2023, 43(2/3): 95-103.

ZHOU Xue-yuan, DU He-kang, LU Zeng-zeng, ZHENG Jian-pei, CHEN Qi. The Role of Biomacromolecule Phase Separation in Diseases. China Biotechnology, 2023, 43(2/3): 95-103.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2209073        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I2/3/95

图1  相分离蛋白质的相互作用及相分离的调控机制
图2  相分离在疾病中的作用
[1] Banani S F, Lee H O, Hyman A A, et al. Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology, 2017, 18(5): 285-298.
doi: 10.1038/nrm.2017.7 pmid: 28225081
[2] Uversky V N. Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Current Opinion in Structural Biology, 2017, 44: 18-30.
doi: S0959-440X(16)30094-X pmid: 27838525
[3] Li P L, Banjade S, Cheng H C, et al. Phase transitions in the assembly of multivalent signalling proteins. Nature, 2012, 483(7389): 336-340.
doi: 10.1038/nature10879
[4] Li J Q, Zhang Y, Chen X, et al. Protein phase separation and its role in chromatin organization and diseases. Biomedicine & Pharmacotherapy, 2021, 138: 111520.
doi: 10.1016/j.biopha.2021.111520
[5] Banani S F, Rice A M, Peeples W B, et al. Compositional control of phase-separated cellular bodies. Cell, 2016, 166(3): 651-663.
doi: S0092-8674(16)30739-5 pmid: 27374333
[6] Brangwynne C P, Eckmann C R, Courson D S, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 2009, 324(5935): 1729-1732.
doi: 10.1126/science.1172046 pmid: 19460965
[7] Du M J, Chen Z J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science, 2018, 361(6403): 704-709.
doi: 10.1126/science.aat1022 pmid: 29976794
[8] Zeng M L, Chen X D, Guan D S, et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell, 2018, 174(5): 1172-1187.e16.
doi: S0092-8674(18)30850-X pmid: 30078712
[9] Sabari B R, Dall’Agnese A, Boija A, et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science, 2018, 361(6400): eaar3958.
doi: 10.1126/science.aar3958
[10] Larson A G, Elnatan D, Keenen M M, et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature, 2017, 547(7662): 236-240.
doi: 10.1038/nature22822
[11] Sheu-Gruttadauria J, MacRae I J. Phase transitions in the assembly and function of human miRISC. Cell, 2018, 173(4): 946-957.e16.
doi: S0092-8674(18)30228-9 pmid: 29576456
[12] Jiang H, Wang S S, Huang Y J, et al. Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell, 2015, 163(1): 108-122.
doi: 10.1016/j.cell.2015.08.010 pmid: 26388440
[13] Shan Z L, Tu Y T, Yang Y, et al. Basal condensation of Numb and Pon complex via phase transition during Drosophila neuroblast asymmetric division. Nature Communications, 2018, 9: 737.
doi: 10.1038/s41467-018-03077-3
[14] Sun D X, Wu R B, Zheng J X, et al. Polyubiquitin chain-induced p 62 phase separation drives autophagic cargo segregation. Cell Research, 2018, 28(4): 405-415.
doi: 10.1038/s41422-018-0017-7
[15] Feng Z, Chen X D, Wu X D, et al. Formation of biological condensates via phase separation: characteristics, analytical methods, and physiological implications. Journal of Biological Chemistry, 2019, 294(40): 14823-14835.
doi: 10.1074/jbc.REV119.007895 pmid: 31444270
[16] Simon J R, Carroll N J, Rubinstein M, et al. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nature Chemistry, 2017, 9(6): 509-515.
doi: 10.1038/nchem.2715 pmid: 28537592
[17] Elbaum-Garfinkle S, Kim Y, Szczepaniak K, et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(23): 7189-7194.
[18] Lin Y, Protter D S W, Rosen M K, et al. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Molecular Cell, 2015, 60(2): 208-219.
doi: 10.1016/j.molcel.2015.08.018 pmid: 26412307
[19] Jain A, Vale R D. RNA phase transitions in repeat expansion disorders. Nature, 2017, 546(7657): 243-247.
doi: 10.1038/nature22386
[20] Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell, 2019, 176(3): 419-434.
doi: S0092-8674(18)31649-0 pmid: 30682370
[21] Alberti S, Dormann D. Liquid-liquid phase separation in disease. Annual Review of Genetics, 2019, 53: 171-194.
doi: 10.1146/annurev-genet-112618-043527 pmid: 31430179
[22] Alberti S, Hyman A A. Are aberrant phase transitions a driver of cellular aging? BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 2016, 38(10): 959-968.
doi: 10.1002/bies.v38.10
[23] Wang Z, Zhang H. Phase separation, transition, and autophagic degradation of proteins in development and pathogenesis. Trends in Cell Biology, 2019, 29(5): 417-427.
doi: S0962-8924(19)30019-4 pmid: 30826216
[24] Patel A, Lee H O, Jawerth L, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell, 2015, 162(5): 1066-1077.
doi: 10.1016/j.cell.2015.07.047 pmid: 26317470
[25] Rog O, Köhler S, Dernburg A F. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. eLife, 2017, 6: 21455.
[26] Zhang H, Ji X, Li P L, et al. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Science China Life Sciences, 2020, 63(7): 953-985.
doi: 10.1007/s11427-020-1702-x pmid: 32548680
[27] Taylor J P, Hardy J, Fischbeck K H. Toxic proteins in neurodegenerative disease. Science, 2002, 296(5575): 1991-1995.
doi: 10.1126/science.1067122 pmid: 12065827
[28] Murakami T, Qamar S, Lin J Q, et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron, 2015, 88(4): 678-690.
doi: 10.1016/j.neuron.2015.10.030 pmid: 26526393
[29] Molliex A, Temirov J, Lee J H, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell, 2015, 163(1): 123-133.
doi: 10.1016/j.cell.2015.09.015 pmid: 26406374
[30] Alami N H, Smith R B, Carrasco M A, et al. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron, 2014, 81(3): 536-543.
doi: 10.1016/j.neuron.2013.12.018 pmid: 24507191
[31] DeJesus-Hernandez M, MacKenzie I R, Boeve B F, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 2011, 72(2): 245-256.
doi: 10.1016/j.neuron.2011.09.011 pmid: 21944778
[32] Zu T, Liu Y J, Bañez-Coronel M, et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(51): E4968-E4977.
[33] Odeh H M, Shorter J. Arginine-rich dipeptide-repeat proteins as phase disruptors in C9-ALS/FTD. Emerging Topics in Life Sciences, 2020, 4(3): 293-305.
doi: 10.1042/ETLS20190167 pmid: 32639008
[34] Boeynaems S, Bogaert E, Kovacs D, et al. Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Molecular Cell, 2017, 65(6): 1044-1055.e5.
doi: S1097-2765(17)30128-4 pmid: 28306503
[35] Brangwynne C P, Tompa P, Pappu R V. Polymer physics of intracellular phase transitions. Nature Physics, 2015, 11(11): 899-904.
doi: 10.1038/nphys3532
[36] Solomon D A, Smikle R, Reid M J, et al. Altered phase separation and cellular impact in C9orf72-linked ALS/FTD. Frontiers in Cellular Neuroscience, 2021, 15: 664151.
doi: 10.3389/fncel.2021.664151
[37] Suárez-Calvet M, Neumann M, Arzberger T, et al. Monomethylated and unmethylated FUS exhibit increased binding to transportin and distinguish FTLD-FUS from ALS-FUS. Acta Neuropathologica, 2016, 131(4): 587-604.
doi: 10.1007/s00401-016-1544-2 pmid: 26895297
[38] Qamar S, Wang G Z, Randle S J, et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell, 2018, 173(3): 720-734.e15.
doi: S0092-8674(18)30388-X pmid: 29677515
[39] Hasegawa M, Arai T, Nonaka T, et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Annals of Neurology, 2008, 64(1): 60-70.
doi: 10.1002/ana.21425 pmid: 18546284
[40] Monahan Z, Ryan V H, Janke A M, et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. The EMBO Journal, 2017, 36(20): 2951-2967.
doi: 10.15252/embj.201696394
[41] Ballatore C, Lee V M Y, Trojanowski J Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nature Reviews Neuroscience, 2007, 8(9): 663-672.
doi: 10.1038/nrn2194 pmid: 17684513
[42] Ambadipudi S, Biernat J, Riedel D, et al. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nature Communications, 2017, 8: 275.
doi: 10.1038/s41467-017-00480-0 pmid: 28819146
[43] Wegmann S, Eftekharzadeh B, Tepper K, et al. Tau protein liquid-liquid phase separation can initiate tau aggregation. The EMBO Journal, 2018, 37(7): e98049.
[44] Scherzinger E, Sittler A, Schweiger K, et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8): 4604-4609.
[45] Peskett T R, Rau F, O’Driscoll J, et al. A liquid to solid phase transition underlying pathological huntingtin Exon1 aggregation. Molecular Cell, 2018, 70(4): 588-601.e6.
doi: S1097-2765(18)30277-6 pmid: 29754822
[46] Su X L, Ditlev J A, Hui E F, et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science, 2016, 352(6285): 595-599.
doi: 10.1126/science.aad9964 pmid: 27056844
[47] Lemmon M A, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7): 1117-1134.
doi: 10.1016/j.cell.2010.06.011 pmid: 20602996
[48] Boulay G, Sandoval G J, Riggi N, et al. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell, 2017, 171(1): 163-178.e19.
doi: S0092-8674(17)30872-3 pmid: 28844694
[49] Crozat A, Åman P, Mandahl N, et al. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature, 1993, 363(6430): 640-644.
doi: 10.1038/363640a0
[50] Oshidari R, Huang R, Medghalchi M, et al. DNA repair by Rad 52 liquid droplets. Nature Communications, 2020, 11: 695.
doi: 10.1038/s41467-020-14546-z pmid: 32019927
[51] Pessina F, Giavazzi F, Yin Y D, et al. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nature Cell Biology, 2019, 21(10): 1286-1299.
doi: 10.1038/s41556-019-0392-4 pmid: 31570834
[52] Marzahn M R, Marada S, Lee J H, et al. Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles. The EMBO Journal, 2016, 35(12): 1254-1275.
doi: 10.15252/embj.201593169
[53] Bouchard J J, Otero J H, Scott D C, et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Molecular Cell, 2018, 72(1): 19-36.e8.
doi: S1097-2765(18)30687-7 pmid: 30244836
[54] Schmid M, Speiseder T, Dobner T, et al. DNA virus replication compartments. Journal of Virology, 2014, 88(3): 1404-1420.
doi: 10.1128/JVI.02046-13 pmid: 24257611
[55] Caragliano E, Bonazza S, Frascaroli G, et al. Human cytomegalovirus forms phase-separated compartments at viral genomes to facilitate viral replication. Cell Reports, 2022, 38(10): 110469.
doi: 10.1016/j.celrep.2022.110469
[56] Xu G J, Liu C, Zhou S, et al. Viral tegument proteins restrict cGAS-DNA phase separation to mediate immune evasion. Molecular Cell, 2021, 81(13): 2823-2837.
doi: 10.1016/j.molcel.2021.05.002 pmid: 34015248
[57] Wang J, Shi C R, Xu Q, et al. SARS-CoV-2 nucleocapsid protein undergoes liquid-liquid phase separation into stress granules through its N-terminal intrinsically disordered region. Cell Discovery, 2021, 7: 5.
doi: 10.1038/s41421-020-00240-3 pmid: 33479219
[58] Risso-Ballester J, Galloux M, Cao J J, et al. A condensate-hardening drug blocks RSV replication in vivo. Nature, 2021, 595(7868): 596-599.
doi: 10.1038/s41586-021-03703-z
[59] Fisher R A, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nature Reviews Microbiology, 2017, 15(8): 453-464.
doi: 10.1038/nrmicro.2017.42 pmid: 28529326
[60] Munder M C, Midtvedt D, Franzmann T, et al. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. eLife, 2016, 5: 09347.
[61] Quiroz F G, Fiore V F, Levorse J, et al. Liquid-liquid phase separation drives skin barrier formation. Science, 2020, 367(6483): eaax9554.
doi: 10.1126/science.aax9554
[62] Zhu G Y, Xie J J, Kong W N, et al. Phase separation of disease-associated SHP2 mutants underlies MAPK hyperactivation. Cell, 2020, 183(2): 490-502.e18.
doi: 10.1016/j.cell.2020.09.002
[63] Zhou W, Mohr L, Maciejowski J, et al. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Molecular Cell, 2021, 81(4): 739-755.e7.
doi: 10.1016/j.molcel.2021.01.024 pmid: 33606975
[1] 宁峻涛, 邹诗施, 左锟澜, 吴宗震, 李晶, 徐雁龙, 刘欢. 合成生物活性物质的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(2/3): 180-189.
[2] 李玉锦, 王杰, 王亚妮, 汪耀, 孟佳敏, 张红兵. 巨噬细胞移动抑制因子调控细胞衰老的研究进展*[J]. 中国生物工程杂志, 2023, 43(2/3): 120-129.
[3] 胡秀玲, 熊利洋, 魏云林. 革兰氏阳性菌群体感应系统研究进展[J]. 中国生物工程杂志, 2023, 43(2/3): 165-173.
[4] 郝东霞, 田梦园, 刘洋, 李星, 张媛. 乳外泌体的基本性质及其应用*[J]. 中国生物工程杂志, 2023, 43(2/3): 26-42.
[5] 聂铭甫, 李由然, 石贵阳. 基于磁性壳聚糖复合材料对耐高温酶的固定化研究*[J]. 中国生物工程杂志, 2023, 43(2/3): 83-94.
[6] 张鑫, 张瑞, 唐景峰. AMOT家族成员的功能研究及在癌症治疗中的潜在应用*[J]. 中国生物工程杂志, 2023, 43(2/3): 104-119.
[7] 杜瑶, 王颖, 杨葳, 杨慧, 田殿祥. 真实世界证据与医疗器械监管决策支持[J]. 中国生物工程杂志, 2023, 43(2/3): 174-179.
[8] 马品品, 熊向源. 高分子纳米材料用于口服胰岛素递送体系*[J]. 中国生物工程杂志, 2023, 43(2/3): 43-53.
[9] 韩佳, 张博文, 毛开云. 新型药物递送系统研发格局分析*[J]. 中国生物工程杂志, 2023, 43(2/3): 1-14.
[10] 张文慧, 严健元, 陈渝萍. 疏水蛋白载药系统研究进展*[J]. 中国生物工程杂志, 2023, 43(2/3): 15-25.
[11] 尚华蓉, 孙建中, 朱道辰. 微生物解聚木质素合成聚羟基脂肪酸脂的研究进展*[J]. 中国生物工程杂志, 2023, 43(2/3): 152-164.
[12] 文小虎, 马诗文, 姜世豪, 党政, 赵鹏翔. 应用于糖尿病溃疡的载药静电纺丝敷料研究进展*[J]. 中国生物工程杂志, 2023, 43(2/3): 54-63.
[13] 汪坤, 许志国, 丁健. 地衣芽孢杆菌BF-002高产芽孢的碳源/氮源浓度协同优化控制*[J]. 中国生物工程杂志, 2023, 43(2/3): 75-82.
[14] 杨洋, 姚明东, 王颖, 肖文海. 酵母合成2'-岩藻糖基乳糖的研究进展*[J]. 中国生物工程杂志, 2023, 43(1): 127-138.
[15] 李亚桐, 马媛媛, 汪振洋, 宋浩. 甜菊糖苷的应用及生物合成研究进展*[J]. 中国生物工程杂志, 2023, 43(1): 104-114.