Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (2/3): 83-94    DOI: 10.13523/j.cb.2209059
技术与方法     
基于磁性壳聚糖复合材料对耐高温酶的固定化研究*
聂铭甫1,2,李由然1,2,石贵阳1,2,**()
1 粮食发酵与食品生物制造国家工程研究中心 江南大学 无锡 214122
2 江南大学生物工程学院 无锡 214122
Immobilization of High Temperature Resistant Enzymes Based on Magnetic Chitosan Composites
NIE Ming-fu1,2,LI You-ran1,2,SHI Gui-yang1,2,**()
1 National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
2 School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF(4878 KB)   HTML
摘要:

生物催化剂酶对环境较为敏感,在各种物理、化学和生物因素中,高温对酶的失活效应尤为显著。构建耐热的特异性基质,对酶进行固定化,既有利于提高酶在高温条件下的稳定性,又可实现催化剂的重复使用,极大提升了酶的工业应用价值。以壳聚糖和海藻酸钠为原料,利用碱性溶液冷冻条件下的溶解及氢键重排的方法,制备出力学性质优良且耐高温的壳聚糖复合水凝胶,进一步采用化学交联法制备固定化耐高温酶。通过单因素实验确定最优的固定耐高温酶的条件:壳聚糖质量分数5%,海藻酸钠质量分数 0.5%,ZnSO4溶液质量浓度20 g/L,交联剂乙二醇二缩水甘油醚(EGDE)体积分数0.8%。与游离酶相比,固定化酶的抗酸碱能力和热稳定性提高,最适温度升高5℃(从90℃升高到95℃),并在较宽pH和温度范围内也能保持较高酶活。在80℃下,重复反应8次以后,相对酶活仍能保持在75%以上。利用热重分析(TGA)研究了此类水凝胶中水的状态和热稳定性。建立的固定化酶制备方法,有助于解决工业酶高温情况下易失活,且难以连续使用的问题。

关键词: 壳聚糖耐高温固定化酶水凝胶四氧化三铁    
Abstract:

Biocatalyst enzymes are sensitive to the environment, and high temperature has a significant effect on enzyme inactivation among various physical, chemical and biological factors. The construction of heat-resistant specific matrix and the immobilization of the enzyme can not only improve the stability of the enzyme at high temperature, but also realize the reuse of the catalyst, which greatly improves the industrial application value of the enzyme. In this study, chitosan hydrogels with excellent mechanical properties and high temperature resistance were prepared by means of dissolution and hydrogen bond rearrangement of alkaline solution under freezing conditions, and the immobilized high temperature resistant enzyme was further prepared by chemical cross-linking. The optimal conditions for the fixation of high temperature resistant enzyme were determined by single factor experiment: the mass fraction of chitosan was 5%, the mass fraction of sodium alginate was 0.5%, the mass concentration of ZnSO4 solution was 20 g/L, and the volume fraction of EGDE was 0.8%. Compared with the free enzyme, the immobilized enzyme showed improved acid-base resistance and thermal stability, optimum temperature increase of 5℃ (from 90℃ to 95℃), and also maintained high activity over a wide range of pH and temperature. At the temperature of 80℃, the relative enzyme activity remained above 75% after 8 repeated reactions. Thermogravimetric analysis (TGA) was used to study the state and thermal stability of water in the hydrogels. The immobilized enzyme preparation method established in this study is helpful to solve the problem that industrial enzymes are easy to be inactivated at high temperature and difficult to be used continuously.

Key words: Chitosan    High temperature resistance    Immobilized enzyme    Hydrogel    Fe3O4
收稿日期: 2022-09-21 出版日期: 2023-03-31
ZTFLH:  Q819  
基金资助: *国家重点研发计划(2020YFA0907704);国家自然科学基金(32172174)
通讯作者: **石贵阳     E-mail: gyshi@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
聂铭甫
李由然
石贵阳

引用本文:

聂铭甫, 李由然, 石贵阳. 基于磁性壳聚糖复合材料对耐高温酶的固定化研究*[J]. 中国生物工程杂志, 2023, 43(2/3): 83-94.

NIE Ming-fu, LI You-ran, SHI Gui-yang. Immobilization of High Temperature Resistant Enzymes Based on Magnetic Chitosan Composites. China Biotechnology, 2023, 43(2/3): 83-94.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2209059        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I2/3/83

图1  壳聚糖基质条件下固定化酶的制备
图2  壳聚糖质量浓度对固定化酶活性和力学强度的影响
图3  海藻酸钠添加量对固定化酶活性和力学强度的影响
图4  不同金属离子对固定化酶活和力学强度的影响
图5  ZnSO4溶液浓度对固定化酶活和力学强度的影响
ZnSO4浓度/(g/L) 载酶量/(mg/g)
0 10.67
5 9.14
10 9.26
20 12.88
40 10.54
表1  不同ZnSO4溶液浓度对载酶量的影响
图6  EGDE溶液的浓度对固定化酶活和力学强度的影响
图7  固定化酶的热重及红外分析
图8  不同材料的SEM照片
图9  固定化酶和游离酶的酶学性质比较
[1] Dwevedi A. Enzyme immobilization:an important link between agriculture and industries. Enzyme Immobilization. Cham: Springer International Publishing, 2016: 45-64.
[2] Sheldon R A, van Pelt S. Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews, 2013, 42(15): 6223-6235.
doi: 10.1039/c3cs60075k pmid: 23532151
[3] Hanefeld U, Gardossi L, Magner E. Understanding enzyme immobilisation. Chemical Society Reviews, 2009, 38(2): 453-468.
doi: 10.1039/b711564b pmid: 19169460
[4] 郭勇. 酶工程研究进展与发展前景. 华南理工大学学报(自然科学版), 2002, 30(11): 130-133.
Guo Y. Research progress and prospects of enzyme engineering. Journal of South China University of Technology (Natural Science), 2002, 30(11): 130-133.
[5] Krajewska B. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 2004, 35(2-3): 126-139.
doi: 10.1016/j.enzmictec.2003.12.013
[6] 郑璐. 海藻酸钠固定化α-淀粉酶的研究. 武汉: 华中农业大学, 2013.
Zheng L. Study on immobilization of α-amylase in sodium alginate. Wuhan: Huazhong Agricultural University, 2013.
[7] 高阳, 谭天伟, 聂开立, 等. 大孔树脂固定化脂肪酶及在微水相中催化合成生物柴油的研究. 生物工程学报, 2006, 22(1): 114-118.
doi: 10.1016/S1872-2075(06)60008-3
Gao Y, Tan T W, Nie K L, et al. Immobilization of lipase on macroporous resin and its application in synthesis of biodiesel in low aqueous media. Chinese Journal of Biotechnology, 2006, 22(1): 114-118.
doi: 10.1016/S1872-2075(06)60008-3
[8] 闵丹丹, 何文, 杜晓永, 等. 酶固定化无机载体材料的研究进展. 山东陶瓷, 2011, 34(5): 11-16.
Min D D, He W, Du X Y, et al. Research progress of inorganic materials used as enzyme immobilization carrier. Shandong Ceramics, 2011, 34(5): 11-16.
[9] 龚佩. 天然高分子甲壳素/壳聚糖的溶解性能研究. 武汉: 中国科学院大学(中国科学院武汉物理与数学研究所), 2017.
Gong P. Study on the solubility of natural polymer chitin/chitosan. Wuhan: University of Chinese Academy of Sciences (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences), 2017.
[10] 段将将. 壳聚糖在碱/尿素水体系中的溶解及其高强度智能水凝胶构建. 武汉: 武汉大学, 2016.
Duan J J. Dissolution of chitosan in alkali/urea solvent and construction of robust and smart hydrogels. Wuhan: Wuhan University, 2016.
[11] Liu B J, Wang D F, Yu G L, et al. Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives-a review. Journal of Ocean University of China, 2013, 12(3): 500-508.
doi: 10.1007/s11802-013-2113-0
[12] Wu F C, Tseng R L, Juang R S. Adsorption of dyes and humic acid from water using chitosan-encapsulated activated carbon. Journal of Chemical Technology & Biotechnology, 2002, 77(11): 1269-1279.
[13] Jeon C, Höll W H. Application of the surface complexation model to heavy metal sorption equilibria onto aminated chitosan. Hydrometallurgy, 2004, 71(3-4): 421-428.
doi: 10.1016/S0304-386X(03)00118-X
[14] 杨晶晶, 薛超辉, 李红娟, 等. 磁性Fe3O4纳米粒子固定化酶及其在食品中的应用. 食品与发酵工业, 2022, 48(9): 280-285.
Yang J J, Xue C H, Li H J, et al. Magnetic Fe3O4 nanoparticles immobilized enzymes and its application in food. Food and Fermentation Industries, 2022, 48(9): 280-285.
[15] Shi X J, Xu J, Lu C N, et al. Immobilization of high temperature-resistant GH 3 β-glucosidase on a magnetic particle Fe3O4-SiO2-NH2-Cellu-ZIF8/zeolitic imidazolate framework. Enzyme and Microbial Technology, 2019, 129: 109347.
doi: 10.1016/j.enzmictec.2019.05.004
[16] Thinh N N, Hanh P T B, Ha L T T, et al. Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution. Materials Science & Engineering C, Materials for Biological Applications, 2013, 33(3): 1214-1218.
[17] 赵凯, 许鹏举, 谷广烨. 3, 5-二硝基水杨酸比色法测定还原糖含量的研究. 食品科学, 2008, 29(8): 534-536.
Zhao K, Xu P J, Gu G Y. Study on determination of reducing sugar content using 3, 5-dinitrosalicylic acid method. Food Science, 2008, 29(8): 534-536.
[18] 何东保, 石毅, 梁红波, 等. 壳聚糖-海藻酸钠协同相互作用及其凝胶化的研究. 武汉大学学报(理学版), 2002, 48(2): 193-196.
He D B, Shi Y, Liang H B, et al. Study on synergistic interaction and gelation of chitoan and sodium alginate. Wuhan University Journal (Natural Science Edition), 2002, 48(2): 193-196.
[19] 周俊宇. 碱性溶剂体系壳聚糖凝胶膜制备表征及增强研究. 杭州: 浙江大学, 2013.
Zhou J Y. Preparation, characterization, and enhancement of chitosan hydrogel membrane based on alkali solvent. Hangzhou: Zhejiang University, 2013.
[20] 王靖如. 明胶基高强度水凝胶的制备与性能研究. 郑州: 郑州大学, 2020.
Wang J R. Preparation and properties of gelatin-based high strength hydrogels. Zhengzhou: Zhengzhou University, 2020.
[21] 朱衡, 张继福, 张云, 等. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶. 中国生物工程杂志, 2020, 40(1-2): 124-132.
Zhu H, Zhang J F, Zhang Y, et al. Immobilization of lipase through cross-linking of polyethylene glycol diglycidyl ether with amino carrier LX-1000EA. China Biotechnology, 2020, 40(1-2): 124-132.
[22] 曲荣君, 刘庆俭. PEG双缩水甘油醚交联壳聚糖的制备及其对金属离子的吸附性能. 环境化学, 1996, 15(1): 41-46.
Qu R J, Liu Q J. Preparation and adsorption properties for metal ions of chitosan crosslinked by peg bisglycidyl ether. Environmental Chemistry, 1996, 15(1): 41-46.
[23] Walt D R, Agayn V I. The chemistry of enzyme and protein immobilization with glutaraldehyde. TrAC Trends in Analytical Chemistry, 1994, 13(10): 425-430.
doi: 10.1016/0165-9936(94)85023-2
[24] 屈建. 基于金属离子配位作用增强壳聚糖三维材料的研究. 杭州: 浙江大学, 2011.
Qu J. Reinforcementof 3-D chitosan rod based on the coordination effect of metal ions. Hangzhou: Zhejiang University, 2011.
[1] 金爽,杨运松,梁金花,杨晓瑞,黎晓彤,朱建良. 生物酶/γ-Al2O3小球催化氧化柴油脱硫性能研究[J]. 中国生物工程杂志, 2022, 42(10): 21-30.
[2] 袁小晶,尹海梦,樊晓玮,何俊林,郝石磊,季金苟. 角蛋白/海藻酸钠/聚丙烯酰胺水凝胶皮肤敷料的制备及创口修复研究[J]. 中国生物工程杂志, 2021, 41(8): 17-24.
[3] 朱帅,金明杰,杨树林. 3D生物打印在软骨修复中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 65-71.
[4] 连将儒,马伟芳. DNA水凝胶应用于环境样品快速检测的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 107-115.
[5] 杨运松,梁金花,杨晓瑞,马艺鸣,金爽,孙姚瑶,朱建良. 柴油生物酶催化氧化脱硫的研究进展[J]. 中国生物工程杂志, 2021, 41(10): 109-115.
[6] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[7] 王元斗,宿烽,李速明. 光交联水凝胶在组织工程中的研究进展[J]. 中国生物工程杂志, 2020, 40(4): 91-96.
[8] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[9] 程平,张洋子,马翾,陈旭,朱保庆,许文涛. 刺激响应型DNA水凝胶的性质及其应用 *[J]. 中国生物工程杂志, 2020, 40(3): 132-143.
[10] 朱衡,林海蛟,张继福,张云,孙爱君,胡云峰. 氨基载体共价结合固定化海洋假丝酵母脂肪酶 *[J]. 中国生物工程杂志, 2019, 39(7): 71-78.
[11] 武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.
[12] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[13] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[14] 康肸,邓爱鹏,杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79-84.
[15] 段思腾,李光然,马义勇,邱裕佳,李宇,王伟. 负载NGF的可注射壳聚糖透明质酸水凝胶材料理化性能及生物相容性研究[J]. 中国生物工程杂志, 2018, 38(4): 70-77.