Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (2/3): 15-25    DOI: 10.13523/j.cb.2207068
新型药物递送系统研发与应用专题     
疏水蛋白载药系统研究进展*
张文慧**,严健元**,陈渝萍***()
南华大学药学院 肿瘤微环境响应与药物研究湖南省重点实验室 衡阳 421001
The Progress of Hydrophobin-based Drug Delivery System
ZHANG Wen-hui**,YAN Jian-yuan**,CHEN Yu-ping***()
Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmacy, University of South China, Hengyang 421001, China
 全文: PDF(1064 KB)   HTML
摘要:

药物的临床使用常常因为其强疏水性、低稳定性和高毒副作用等问题受到限制。日新月异的药物递送体系(DDS)可以有效地包载与保护药物,提高其生物相容性、作用特异性和治疗效果。疏水蛋白是真菌在如子实体发育等特殊时期分泌的小分子蛋白质。其独特的两亲性不仅有助于它们自组装成胶束和载送疏水性药物,还便于它们修饰和改造其它载药体系。其超低的免疫原性和细胞毒性则进一步支撑了它们在药物递送中的应用。对近几年基于疏水蛋白所发展的载药系统的研究进展进行了综述。

关键词: 载药体系蛋白胶束疏水蛋白真菌    
Abstract:

The strong hydrophobicity, low stability and high side effects of drugs largely limit their clinical use. Drug delivery system (DDS) has undergone fast growth. It can effectively carry and protect drugs, thus increasing their biocompatibility, action specificity and effectiveness. Hydrophobins are small molecular proteins secreted during the special period of fungi, such as the development of fungal fruiting bodies. They possess unique amphiphilicity to aid their self-assembly into micellar structure and modification for other DDSs progress, while their extremely low immunogenicity and cytotoxicity further support their application in drug delivery. This paper reviews the research progress of hydrophobin-based DDS in recent years.

Key words: Drug delivery system    Protein micelles    Hydrophobin    Fungus
收稿日期: 2022-07-31 出版日期: 2023-03-31
ZTFLH:  Q819  
基金资助: *湖南省教育厅大学生研究性和创新性实验计划(s202110555236)
通讯作者: ***陈渝萍     E-mail: yuingc@usc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张文慧
严健元
陈渝萍

引用本文:

张文慧, 严健元, 陈渝萍. 疏水蛋白载药系统研究进展*[J]. 中国生物工程杂志, 2023, 43(2/3): 15-25.

ZHANG Wen-hui, YAN Jian-yuan, CHEN Yu-ping. The Progress of Hydrophobin-based Drug Delivery System. China Biotechnology, 2023, 43(2/3): 15-25.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2207068        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I2/3/15

图1  疏水蛋白在亲疏水界面的自组装
类型 疏水蛋白 来源 递药体系 功能 参考文献
I型 HGFI 灰树花 Cur 增强药物抗肿瘤效果 [21]
I型 HGFI 灰树花 Cur 增加药物溶解性和稳定性 [22]
I型 HGFI 灰树花 menaquinone-7 增加药物溶解性 [23]
I型 MGF3、MGF6 灰树花 IND 增加药物的溶解性和稳定性,缓释药物 [24]
I型 MG24 灰树花 MWCNTS 提高纳米管的分散稳定性 [25]
I型 MGF6 灰树花 MGF6-HNTS-Dox 促进药物分散和延缓药物释放 [26]
I型 HPB 真菌 HPB-PLGA-Cur 增强药物抗肿瘤效果 [27]
II型 HFB-1 里氏木霉菌 HFB-1-Nio-DOX 改善药物分布、增加药物血液循环时间和免疫逃逸功能 [28]
II型 HFBIV 里氏木霉菌 Tf-HFBIV-Psi 靶向配体,提高纳米颗粒摄取 [29]
II型 HFBII 里氏木霉菌 HFBII-NP-PTX 谷胱甘肽响应性缓释药物,降低药物IC50 [30]
II型 HFBII 里氏木霉菌 HFBII-FNPs 降低纳米颗粒与血浆蛋白的吸附性 [31]
II型 HFBII 里氏木霉菌 HFBII-NFC-O-IBU 作为表面活性剂稳定乳液 [32]
II型 HFBI 里氏木霉菌 FA 结晶抑制剂 [33]
表1  应用于载药等生物医用的疏水蛋白
用途分类 融合疏水蛋白 表达体系 纯化方法 优点 应用 文献
抗原抗体的制备、检测和固定 rK39-HFBI 植物 ATPS 消除了通过额外步骤去除纯化标签的需要 用于内脏利什曼病免疫诊断 [35]
Hydrophobin-Protein A 植物 单一ATPS 纯化成本更低并且蛋白质回收率相当,增加蛋白A树脂的寿命,减少单克隆抗体的损失 提高西尼罗河病毒单克隆抗体(E16)产量 [36]
HFB-DomIII-1
HFB-DomIII-2
昆虫幼虫杆状病毒系统 ATPS 快速、简便和成本效益高的方法用于生产与HFB融合的重组抗原,并且重组抗原的安全性较高 固定抗原DENV,检测抗体水平 [38]
医疗器械抗菌涂层 LL37-Vmh2 大肠杆菌表达系统 超滤回收
Vmh2
提高抗菌肽抗表皮葡萄球菌生物膜活性并且对革兰氏阳性和革兰氏阴性菌都有效 用于医疗器械的涂层,抑制其表面微生物生长 [40]
生物传感器 ArsC-Vmh2 Vmh2-ArsC 大肠杆菌表达系统 包涵体变性复性 嵌合蛋白既具有vm2的黏附特性,又具有耐热砷酸还原酶的砷传感能力 电化学生物传感器用于检测As(III) [41]
Ccg2-EPSPS 大肠杆菌表达系统 镍柱亲和
纯化
降低了传统传感器程序的复杂性,并允许实时检测 高度灵敏传感器用于检测草甘膦 [42]
Lac-Vmh2 毕赤酵母表达系统 上清液浓缩并透析 方法简单、环保且用途广泛,既可用作FLG的表面活性剂,也克服了在剥离石墨烯过程中的分散稳定性 用于修饰玻碳类化合物的电化学传感器 [43]
Vmh2-ScFvSTX
Vmh2-ScFvDA
大肠杆菌表达系统 包涵体变性复性 方法简单智能,Vmh2允许ScFv将MBs直接功能化不需任何化学修饰,MBs可以使用磁场回收重复利用 固定抗体ScFvs,诊断抗原 [34]
表2  生物医用的新型融合疏水蛋白
融合标签 蛋白质 表达体系 纯化方法 优点 应用 文献
ramp DewA 大肠杆菌表达系统 异丙醇改进的双相水分离 避免耗时且低效的蛋白质复性和纯化步骤,且纯化过程只使用IPA一种试剂 提高疏水蛋白的表达和产量 [45]
CBD CBD-HGFI 大肠杆菌表达系统 镍柱亲和纯化 CBD特异性与BC结合,促进从粗提取物中快速分离和纯化疏水蛋白 提高疏水蛋白的表达和产量 [44]
Ffu312 EAS-Ffu312
HFBII-Ffu312
大肠杆菌表达系统 镍柱亲和纯化 融合蛋白分泌到周质和培养基中简化了纯化,便于提供氧化环境和二硫异构酶,促进疏水蛋白二硫键的形成 提高疏水蛋白的表达和产量 [47]
表3  生物医用疏水蛋白制备新方法——融合标签
表达体系 疏水蛋白 纯化方法 优点 应用 文献
大肠杆菌无细胞表达系统 I型:EASΔ15、EAS、DewY - a DewA mutant、RodA、MPG1
II型:NC2
Ni-NTA亲和层析 克服重组疏水蛋白的变性重折叠问题以允许正确折叠并提高蛋白质产量,反应环境可以直接控制 提高疏水蛋白的表达和产量 [49-50]
SHuffle T7大肠
杆菌表达系统
I型:PC1、WL1、SL1、SC16 IMAC柱纯化 有效形成二硫键的还原环境,持续产生高水平、高纯度的疏水蛋白 提高疏水蛋白的表达和产量 [51]
表4  生物医用疏水蛋白制备新方法——表达体系
[1] 刘启红, 高文霞, 丁金昌. 抗肿瘤药物载体研究进展. 辽宁化工, 2018, 47(7): 674-676.
Liu Q H, Gao W X, Ding J C. Research progress of antitumor drug carriers. Liaoning Chemical Industry, 2018, 47(7): 674-676.
[2] Sohail M, Guo W N, Li Z Y, et al. Nanocarrier-based drug delivery system for cancer therapeutics: a review of the last decade. Current Medicinal Chemistry, 2021, 28(19): 3753-3772.
[3] 张曼玉, 楼晨曦, 曹傲能. 主动靶向载药脂质体在肿瘤治疗中的研究进展. 生物医学工程学杂志, 2022, 39: 633-638.
Zhang M Y, Lou C X, Cao A N. Progresses on active targeting liposome drug delivery systems for tumor therapy. Journal of Biomedical Engineering, 2022, 39: 633-638.
[4] Liu B M, Teng Y, Zhang X, et al. Novel immobilized polyoxometalate heterogeneous catalyst for the efficient and durable removal of tetracycline in a Fenton-like system. Separation and Purification Technology, 2022, 288: 120594.
doi: 10.1016/j.seppur.2022.120594
[5] Wösten H A B, Scholtmeijer K. Applications of hydrophobins: current state and perspectives. Applied Microbiology and Biotechnology, 2015, 99(4): 1587-1597.
doi: 10.1007/s00253-014-6319-x pmid: 25564034
[6] Wang B, Han Z Q, Song B, et al. Effective drug delivery system based on hydrophobin and halloysite clay nanotubes for sustained release of doxorubicin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628: 127351.
doi: 10.1016/j.colsurfa.2021.127351
[7] Akanbi M H J, Post E, van Putten S M, et al. The antitumor activity of hydrophobin SC3, a fungal protein. Applied Microbiology and Biotechnology, 2013, 97(10): 4385-4392.
doi: 10.1007/s00253-012-4311-x pmid: 22846904
[8] Kuvarina A E, Rogozhin E A, Sykonnikov M A, et al. Isolation and characterization of a novel hydrophobin, sa-HFB1, with antifungal activity from an alkaliphilic fungus, Sodiomyces alkalinus. Journal of Fungi (Basel, Switzerland), 2022, 8(7): 659.
[9] Cheng Y Y, Wang B, Wang Y Y, et al. Soluble hydrophobin mutants produced in Escherichia coli can self-assemble at various interfaces. Journal of Colloid and Interface Science, 2020, 573: 384-395.
doi: 10.1016/j.jcis.2020.04.012
[10] de Vocht M L, Reviakine I, Wösten H A, et al. Structural and functional role of the disulfide bridges in the hydrophobin SC3. The Journal of Biological Chemistry, 2000, 275(37): 28428-28432.
doi: 10.1074/jbc.M000691200
[11] 王泽方. 疏水蛋白HGFI的表达、功能应用及自组装机制研究. 天津: 南开大学, 2010.
Wang Z F. Expression, functional applications and self-assembly mechanism of hydrophobin HGFI. Tianjin: Nankai University, 2010.
[12] Vergunst K L, Langelaan D N. The N-terminal tail of the hydrophobin SC16 is not required for rodlet formation. Scientific Reports, 2022, 12: 366.
doi: 10.1038/s41598-021-04223-6 pmid: 35013607
[13] Paananen A, Weich S, Szilvay G R, et al. Quantifying biomolecular hydrophobicity: single molecule force spectroscopy of class II hydrophobins. Journal of Biological Chemistry, 2021, 296: 100728.
doi: 10.1016/j.jbc.2021.100728
[14] Haas Jimoh Akanbi M, Post E, Meter-Arkema A, et al. Use of hydrophobins in formulation of water insoluble drugs for oral administration. Colloids and Surfaces B: Biointerfaces, 2010, 75(2): 526-531.
doi: 10.1016/j.colsurfb.2009.09.030 pmid: 19836932
[15] 李炳章. 疏水蛋白rHGFI在聚丙烯表面的自组装及其在药物载体中的应用. 太原: 太原理工大学, 2017.
Li B Z. Self-assembly of hydrophobins on polypropylene surface and its application in drug carrier. Taiyuan: Taiyuan University of Technology, 2017.
[16] Zhao L Q, Xu H J, Li Y, et al. Novel application of hydrophobin in medical science: a drug carrier for improving serum stability. Scientific Reports, 2016, 6: 26461.
doi: 10.1038/srep26461 pmid: 27212208
[17] Sarparanta M, Bimbo L M, Rytkönen J, et al. Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Molecular Pharmaceutics, 2012, 9(3): 654-663.
doi: 10.1021/mp200611d pmid: 22277076
[18] Zhao L Q, Ma S Y, Pan Y W, et al. Functional modification of fibrous PCL scaffolds with fusion protein VEGF-HGFI enhanced cellularization and vascularization. Advanced Healthcare Materials, 2016, 5(18): 2376-2385.
doi: 10.1002/adhm.201600226 pmid: 27391702
[19] Hektor H J, Scholtmeijer K. Hydrophobins: proteins with potential. Current Opinion in Biotechnology, 2005, 16(4): 434-439.
pmid: 15950452
[20] Scholtmeijer K, Wessels J, Wösten H. Fungal hydrophobins in medical and technical applications. Applied Microbiology and Biotechnology, 2001, 56(1): 1-8.
doi: 10.1007/s002530100632
[21] Song D M, Wang X X, Yang J X, et al. Hydrophobin HGFI improving the nanoparticle formation, stability and solubility of curcumin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125922.
doi: 10.1016/j.colsurfa.2020.125922
[22] Niu B L, Li M L, Jia J H, et al. Hydrophobin-enhanced stability, dispersions and release of curcumin nanoparticles in water. Journal of Biomaterials Science Polymer Edition, 2020, 31(14): 1793-1805.
doi: 10.1080/09205063.2020.1775761
[23] Tang H F, Zhu Z, Zheng Z M, et al. A study of hydrophobins-modified menaquinone-7 on osteoblastic cells differentiation. Molecular and Cellular Biochemistry, 2021, 476(4): 1939-1948.
doi: 10.1007/s11010-021-04062-z pmid: 33502649
[24] Yang J X, Wang B, Ge L, et al. The enhancement of surface activity and nanoparticle stability through the alteration of charged amino acids of HGFI. Colloids and Surfaces B: Biointerfaces, 2019, 175: 703-712.
doi: S0927-7765(18)30925-1 pmid: 30594056
[25] Wang X X, Song D M, Wang B, et al. A mutant of hydrophobin HGFI tuning the self-assembly behaviour and biosurfactant activity. Applied Microbiology and Biotechnology, 2017, 101(23): 8419-8430.
doi: 10.1007/s00253-017-8577-x
[26] Wang B, Han Z Q, Song B, et al. Effective drug delivery system based on hydrophobin and halloysite clay nanotubes for sustained release of doxorubicin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628: 127351.
doi: 10.1016/j.colsurfa.2021.127351
[27] Sun L, Xu H, Xu J H, et al. Enhanced antitumor efficacy of curcumin-loaded PLGA nanoparticles coated with unique fungal hydrophobin. AAPS PharmSciTech, 2020, 21(5): 171.
doi: 10.1208/s12249-020-01698-w pmid: 32529560
[28] Maiolo D, Pigliacelli C, Sánchez Moreno P, et al. Bioreducible hydrophobin-stabilized supraparticles for selective intracellular release. ACS Nano, 2017, 11(9): 9413-9423.
doi: 10.1021/acsnano.7b04979 pmid: 28806871
[29] Ayaz N, Dichiarante V, Pigliacelli C, et al. Hydrophobin-coated solid fluorinated nanoparticles for 19F-MRI. Advanced Materials Interfaces, 2022, 9(18): 2101677.
doi: 10.1002/admi.v9.18
[30] Paukkonen H, Ukkonen A, Szilvay G, et al. Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs. European Journal of Pharmaceutical Sciences, 2017, 100: 238-248.
doi: S0928-0987(17)30053-2 pmid: 28126561
[31] Sallada N, Li Y J, Berger B, et al. Engineered hydrophobin as a crystallization inhibitor for flufenamic acid. ACS Applied Bio Materials, 2021, 4(8): 6441-6450.
doi: 10.1021/acsabm.1c00612 pmid: 35006868
[32] Reuter L J, Shahbazi M A, Mäkilä E M, et al. Coating nanoparticles with plant-produced transferrin-hydrophobin fusion protein enhances their uptake in cancer cells. Bioconjugate Chemistry, 2017, 28(6): 1639-1648.
doi: 10.1021/acs.bioconjchem.7b00075 pmid: 28557453
[33] Barani M, Mirzaei M, Torkzadeh-Mahani M, et al. A new formulation of hydrophobin-coated niosome as a drug carrier to cancer cells. Materials Science and Engineering: C, 2020, 113: 110975.
doi: 10.1016/j.msec.2020.110975
[34] Stanzione I, Izquierdo-Bote D, González García M B, et al. Immobilization of antibodies by genetic fusion to a fungal self-assembling adhesive protein. Frontiers in Molecular Biosciences, 2021, 8: 725697.
doi: 10.3389/fmolb.2021.725697
[35] Silva B B, Santos E N F N, Araújo L S, et al. Plant expression of hydrophobin fused K 39 antigen for visceral leishmaniasis immunodiagnosis. Frontiers in Plant Science, 2021, 12: 674015.
doi: 10.3389/fpls.2021.674015
[36] Jugler C, Joensuu J, Chen Q. Hydrophobin-protein A fusion protein produced in plants efficiently purified an anti-west Nile virus monoclonal antibody from plant extracts via aqueous two-phase separation. International Journal of Molecular Sciences, 2020, 21(6): 2140.
doi: 10.3390/ijms21062140
[37] Hamedani P R, Solouki M, Ehsani P, et al. Expression of BMP2-Hydrophobin fusion protein in the tobacco plant and molecular dynamic evaluation of its simulated model. Plant Biotechnology Reports, 2021, 15(3): 309-316.
doi: 10.1007/s11816-021-00684-3
[38] Cerezo J, Targovnik A M, Smith M E, et al. Simple production of hydrophobin-fused domain III of dengue envelope protein and induction of neutralizing antibodies against the homotypic serotype of dengue virus. Biotechnology Letters, 2020, 42(3): 419-428.
doi: 10.1007/s10529-019-02767-2 pmid: 31828570
[39] Wang X X, Liu F L, Zhang Y T, et al. Effective adsorption of nisin on the surface of polystyrene using hydrophobin HGFI. International Journal of Biological Macromolecules, 2021, 173: 399-408.
doi: 10.1016/j.ijbiomac.2021.01.052 pmid: 33454334
[40] Sorrentino I, Gargano M, Ricciardelli A, et al. Development of anti-bacterial surfaces using a hydrophobin chimeric protein. International Journal of Biological Macromolecules, 2020, 164: 2293-2300.
doi: 10.1016/j.ijbiomac.2020.07.301 pmid: 32768482
[41] Puopolo R, Sorrentino I, Gallo G, et al. Self-assembling thermostable chimeras as new platform for arsenic biosensing. Scientific Reports, 2021, 11: 2991.
doi: 10.1038/s41598-021-82648-9 pmid: 33542380
[42] Rettke D, Döring J, Martin S, et al. Picomolar glyphosate sensitivity of an optical particle-based sensor utilizing biomimetic interaction principles. Biosensors & Bioelectronics, 2020, 165: 112262.
doi: 10.1016/j.bios.2020.112262
[43] Sorrentino I, Stanzione I, Nedellec Y, et al. From graphite to laccase biofunctionalized few-layer graphene: a “one pot” approach using a chimeric enzyme. International Journal of Molecular Sciences, 2020, 21(11): 3741.
doi: 10.3390/ijms21113741
[44] Puspitasari N, Lee C K. Class I hydrophobin fusion with cellulose binding domain for its soluble expression and facile purification. International Journal of Biological Macromolecules, 2021, 193(Pt A): 38-43.
doi: 10.1016/j.ijbiomac.2021.10.089 pmid: 34688673
[45] Ahn S O, Lim H D, You S H, et al. Soluble expression and efficient purification of recombinant class I hydrophobin DewA. International Journal of Molecular Sciences, 2021, 22(15): 7843.
doi: 10.3390/ijms22157843
[46] Marques L É C, Silva B B, Dutra R F, et al. Transient expression of dengue virus NS 1 antigen in Nicotiana benthamiana for use as a diagnostic antigen. Frontiers in Plant Science, 2019, 10: 1674.
doi: 10.3389/fpls.2019.01674 pmid: 32010161
[47] Cui L P, Cheng C, Qiu Y M, et al. Excretory overexpression of hydrophobins as multifunctional biosurfactants in E. coli. International Journal of Biological Macromolecules, 2020, 165: 1296-1302.
doi: 10.1016/j.ijbiomac.2020.09.206
[48] Darsaraei H, Ghovvati S. In silico methods for secretory production of a fungal hydrophobin (HYPAI) in yeast to serve as a promising target for drug delivery. International Journal of Peptide Research and Therapeutics, 2021, 28(1): 1-11.
doi: 10.1007/s10989-021-10311-y
[49] Siddiquee R, Kwan A H. Cell-free synthesis of correctly folded proteins with multiple disulphide bonds: production of fungal hydrophobins. Bio-protocol, 2021, 11(10): e4019.
doi: 10.21769/BioProtoc.4019 pmid: 34150926
[50] Siddiquee R, Choi S S C, Lam S S, et al. Cell-free expression of natively folded hydrophobins. Protein Expression and Purification, 2020, 170: 105591.
doi: 10.1016/j.pep.2020.105591
[51] Kenward C, Vergunst K L, Langelaan D N. Expression, purification, and refolding of diverse class IB hydrophobins. Protein Expression and Purification, 2020, 176: 105732.
doi: 10.1016/j.pep.2020.105732
[52] Vereman J, Thysens T, Van Impe J, et al. Improved extraction and purification of the hydrophobin HFBI. Biotechnology Journal, 2021, 16(11): e2100245.
[53] Riveros G D, Cordova K, Michiels C, et al. Polydopamine imprinted magnetic nanoparticles as a method to purify and detect class II hydrophobins from heterogeneous mixtures. Talanta, 2016, 160: 761-767.
doi: S0039-9140(16)30592-6 pmid: 27591673
[1] 林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.
[2] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[3] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[4] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[5] 吴果果,宋淑婷,岳荣,张晶,关莹,王玥,刘宝爱,吕学敏,魏建军,张会图. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用 *[J]. 中国生物工程杂志, 2019, 39(11): 78-86.
[6] 来亚鹏, 邓婷婷, 刘刚, 王娟. 同源过表达BglR对嗜热毁丝霉β-葡萄糖苷酶活性的影响[J]. 中国生物工程杂志, 2017, 37(7): 64-71.
[7] 吕珊珊, 侯运华, 闫孟节, 钟耀华. 工业真菌高效产酶突变技术与高产机制[J]. 中国生物工程杂志, 2016, 36(3): 111-119.
[8] 任琴, 郭志鸿, 王亚军, 谢忠奎, 王若愚. RNA干扰及其在增强作物抵抗有害真核生物研究中的应用[J]. 中国生物工程杂志, 2015, 35(6): 80-89.
[9] 严菊芬, 齐宁波, 王素萍, 赵健烽, 杨树林. 温莪术内生真菌Gibberella moniliformis EZG0807诱变及其诱变株遗传稳定性研究[J]. 中国生物工程杂志, 2014, 34(5): 23-29.
[10] 韩启灿, 霍光华, 罗桂祥. 一株病原拮抗野生菌株的筛选、鉴定及其发酵工艺优化[J]. 中国生物工程杂志, 2014, 34(5): 66-74.
[11] 胡彬彬, 林连兵, 魏云林, 季秀玲, 张琦. 一种高效的真菌总蛋白质提取方法[J]. 中国生物工程杂志, 2013, 33(9): 53-58.
[12] 邵子静, 蒋楠, 晏华立, 詹诚, 徐莺, 陈放. 麻疯树核糖体失活蛋白Curcin2的原核可溶性表达及其抗真菌活性研究[J]. 中国生物工程杂志, 2013, 33(7): 43-49.
[13] 严菊芬, 齐宁波, 王素萍, 盖丽丽, 杨树林. 活性内生真菌EZG0807的鉴定及其生物学特性研究[J]. 中国生物工程杂志, 2013, 33(10): 51-58.
[14] 张占生, 李彦旭, 杜青平, 夏丽娟. 一株苯系物降解真菌筛选及降解特性[J]. 中国生物工程杂志, 2013, 33(1): 47-52.
[15] 何小兵, 贾怀杰, 景志忠. Toll样受体对病原真菌的天然免疫识别[J]. 中国生物工程杂志, 2012, 32(12): 86-92.