为了探索力生长因子羧基端E结构域的后24个氨基酸组成的短肽(MGF-Ct24E)对成骨细胞生物学活性的影响,通过组织块培养法获得大鼠原代成骨细胞,采用MTT法和流式细胞仪检测细胞的增殖及细胞周期分布情况,基因芯片技术检测细胞基因表达谱,并用定量PCR实验验证芯片检测结果。结果显示MGF-Ct24E组的细胞增殖活性明显高于对照组,且在培养第一天促增殖效果最为显著。细胞周期结果显示MGF-Ct24E显著提高了S期和G2/M期的细胞所占比例。基因芯片检测发现差异表达基因共1397个,其中上调922,下调475,且差异表达的基因主要是关于细胞的增殖分化调节,生长因子结合和活性调节等方面。MGF-Ct24E对成骨细胞的这种增殖分化调控提示MGF-Ct24E在促进骨修复方面有着潜在的应用价值。
目的:用OAS1蛋白免疫小鼠,获得OAS1特异性单克隆抗体,为OAS1的含量测定提供基础。方法:通过全基因合成的方法获得目的基因序列,转化大肠杆菌BL21细胞诱导His-OAS1及OAS1蛋白表达,纯化后用作抗原免疫小鼠,取脾融合,筛选稳定分泌抗体的阳性细胞株,制备并纯化单抗,通过SDS-PAGE,ELISA,Western blot等方法进行检测。结果:体外高效表达OAS1蛋白,并成功制备特异性单克隆抗体,效价在5×10-11mol/L以上,亲和常数为3.37×108 L·mol-1。结论:获得高亲和力OAS1单克隆抗体,为其含量的检测奠定了基础。
白细胞介素-1受体相关激酶-2(IRAK2)是调节IL1和Toll样受体信号通路的一个关键性分子,目前对于共价修饰如何调节IRAK2的活性还所知甚少。当与IRAK1共转染时,IRAK2能被共价修饰,在SDS-PAGE分离中呈现出迁移率变慢的多条电泳带。在小鼠骨髓干细胞分化的巨噬细胞(BMMs)中,内源表达的IRAK2在TLR配体刺激下也呈现出类似的共价修饰。而且IRAK2的共价修饰具有磷酸酯酶敏感性,提示大部分为磷酸化修饰。通过体外磷酸激酶活性分析,发现巨噬细胞中表达的IRAK2能在LPS诱导下被激活,成为一个具有激酶活性的调节蛋白。进一步研究发现激酶灭活的IRAK2突变体不能重建IRAK2基因敲除巨噬细胞的功能。通过Western杂交和定量PCR分析,发现IRAK2的激酶活性是介导LPS诱导的信号通路和炎症因子表达所必须的。因此,在LPS诱导下,IRAK2可能被IRAK1进行磷酸化修饰而活化,从而介导下游的信号转导通路、诱导炎症因子的表达。
目的:利用Bac-to-Bac Baculovirus Expression System表达重组HA蛋白,Western blot及IFA方法鉴定其表达。方法:采用PCR方法扩增A/California/04/2009(H1N1)HA基因,将其克隆到pFastBacHT A载体上,重组质粒pFastBacHT-HA经双酶切及测序鉴定正确后,转化阳性重组载体进入E.coli DH10Bac感受态细胞中,通过Bluo-gal蓝白斑筛选、PCR鉴定获得重组转座子rBacmid-HA。从重组转座子中提取rBacmid-HA质粒DNA转染sf 9昆虫细胞,制备重组杆状病毒。重组杆状病毒感染sf 9细胞表达重组蛋白,Western blot及IFA鉴定重组蛋白表达情况。结论:成功构建了甲型H1N1流感病毒HA基因的昆虫杆状病毒表达载体,该表达载体转染昆虫细胞后制备的重组杆状病毒病毒滴度较高,重组杆状病毒表达的重组蛋白经Western blot 及IFA 鉴定后具有良好的免疫反应原性。
目的:构建pPIC-vMIP-II-TfN酵母表达载体,表达纯化vMIP-II-TfN融合蛋白。方法:利用PCR方法扩增编码人转铁蛋白N端半分子的基因片段,通过酶切、连接、转化等分子克隆方法构建pPIC-vMIP-II-TfN酵母表达载体;电击法转化X33酵母菌;用甲醇诱导重组酵母菌表达融合蛋白,利用硫酸铵沉淀、透析、Ni-NTA层析等技术进行蛋白纯化,SDS-PAGE和Western blot检测蛋白表达和纯化情况,利用趋化实验进行纯化蛋白活性检测。结果:经过两次PCR扩增了一个长约1.1kb的包含Xba I酶切位点的IgG3-TfN基因片段,插入pPIC-vMIP-II的Xba I酶切位点,经菌液PCR鉴定获得重组子,测序结果表明构建载体pPIC-vMIP-II-TfN的表达框正确无误,转化X33酵母菌,用甲醇诱导表达出48kDa的vMIP-II-TfN融合蛋白,经硫酸铵沉淀、透析、Ni-NTA纯化后得到纯度约为95%的vMIP-II-TfN融合蛋白。Western印迹结果表明融合蛋白能与转铁蛋白抗体特异性结合。活性检测表明经过诱导表达的vMIP-II-TfN融合蛋白具有趋化抑制活性。结论:成功构建pPIC-vMIP-II-TfN酵母表达载体,重组酵母工程菌经甲醇诱导成功表达出vMIP-II-TfN融合蛋白,纯化后的vMIP-II-TfN融合蛋白具有趋化抑制活性。
考察了8种含氮培养基对湛江等鞭金藻(I. zhanjiangensis)生长、PSⅡ活性、油脂及碳水化合物积累的影响。结果显示,当培养基中氮浓度为1.5 g/L,藻细胞的总脂肪含量和产量分别达到最高值为39.8 %和 0.92 g/L, 碳水化合物的含量为最低11.6 %;而当培养基中氮浓度为 0.016 g/L,藻细胞的总脂肪含量和产量分别达到最低值为21.1 %和0.16 g/L。而此时总碳水化合物含量最高达到44.4 %。同时线性拟合方程的结果表明培养基中NO3-的浓度与藻细胞的总脂含量呈较好的正相关性。因此,通过研究不同含氮水平的培养基实现了脂肪或碳水化合物产量的调控。
热激蛋白60作为分子伴侣家族中的重要成员,在蛋白质的运输、组装以及折叠等方面起到重要的作用。利用离子交换层析和凝胶过滤层析两步纯化方法,从霞水母刺丝囊细胞中分离到热激蛋白60。SDS-PAGE结果显示,在分子量为60kDa处显示为单一清晰的蛋白条带,并且通过N末端测序进行鉴定,其序列为APKEIKFGADAKSLM与热激蛋白60相吻合;此外,还利用ELISA法对其进一步确定,同时对分离过程的热激蛋白60的回收率进行了测定。该方法为进一步研究霞水母热激蛋白60的功能及其应用奠定了基础。
研究了胰蛋白酶、Alcalase 碱性蛋白酶、木瓜蛋白酶对鲜鹿茸的降解过程,确定了优化降解工艺条件,具有一定的理论意义和实践价值。确定了Alcalase 碱性蛋白酶的降解效率最高,通过单因素实验确定了降解过程中底物浓度、酶解温度、pH值和酶解时间为影响鲜鹿茸降解率的主要因素。正交试验确定最佳的酶解条件为:底物浓度0.08 g/ml、酶解温度65 ℃、pH 9.0、酶解时间6.0 h。在此条件下,鲜鹿茸降解率高达92.6%,氨基酸产品收率达12.1%。
采用经高碘酸钠活化的右旋糖酐修饰Savinase蛋白酶,通过凝胶过滤层析(GPC)和圆二色性光谱(CD)表征了修饰后蛋白酶分子量和结构的变化,测试了修饰酶的反应动力学参数,并考察了温度及pH对修饰酶活力的影响。凝胶过滤层析结果证明修饰后蛋白酶分子量明显提高,圆二色光谱分析表明修饰后蛋白酶的结构有所改变,进一步验证了右旋糖酐和蛋白酶发生了反应。与原酶相比,修饰酶对底物的亲和力增加。原酶和修饰酶的最适温度均为40℃,在30℃~50℃之间修饰酶表现出优于原酶的热稳定性。在pH8.5~9.5之间,修饰酶的稳定性高于原酶。
为了实现来源于碱性芽孢杆菌Alkalophilic Bacillus clarkii 7364的γ-环糊精葡萄糖基转移酶的高效胞外表达,对OmpA信号肽介导的E.coli BL21(DE3)/pET20b(+)-γcgt基因工程菌进行发酵培养基及发酵条件的优化,并进行正交试验,获得最优培养基:甘油5g/L、蛋白胨6g/L、酵母膏24g/L、钙离子6mmol/L、镁离子2mmol/L、甘氨酸0.75%、PO43- 0.1mol/L;在此基础上最适发酵条件:pH6.5、25℃培养、装液量30ml/250ml、转速220r/min、0.02%SDS、在发酵10h时利用5g/L乳糖进行诱导,使得酶活从初始的5189.2U/ml提高到20268.8U/ml。研究结果得到高效表达的培养条件,为实现该酶的工业化应用打下了基础。
钝齿棒杆菌(Corynebacterium crenatum)AS.M7是筛选获得的一株高产精氨酸生产菌株。ArgR是精氨酸合成过程中的一种调控蛋白。为进一步验证其在钝齿棒杆菌中对精氨酸合成量的影响,利用特异性引物,分别扩增标准菌C. creantum AS 1.542和诱变菌C. creantum AS.M7的argR全长基因,测序后比较二者的差异;结果表明标准菌argR基因ORF全长516 bp,编码一个含172个氨基酸残基的蛋白;而诱变菌argR基因的109位碱基由C替换为T,导致ArgR蛋白在钝齿诱变菌中表达被提前终止。同时,将来源于标准菌的argR基因连接到穿梭表达载体pXMJ19中,电击转化至诱变菌C. crenatum AS.M7 得到重组菌株,用摇瓶发酵的方法观测重组菌产精氨酸量的变化。SDS-PAGE和Western blot分析证明标准菌的argR基因在诱变菌中得到了表达。对重组诱变菌产精氨酸量进行了测定,结果显示:产精氨酸能力由原来7.8 mg/ml下降至2.5 mg/ml,下降了约67.9%。
将经RACE方法克隆到的青蒿倍半萜合酶cDNA(AF304444) 开放阅读框插入到原核表达载体pET30a(+)的NcoⅠ和BamHⅠ酶切位点之间,构建N端和C端均携带有HIS6表达标签的重组表达载体pET30SESQ。将pET30SESQ转入大肠杆菌BL21(DE3), IPTG(Isopropyl-beta-D-thiogalactoside)诱导蛋白表达,表达产物经镍琼脂糖柱纯化。纯化蛋白加入酶促反应体系(FPP),GC-MS分析酶促反应体系的正己烷萃取物,结果显示此重组酶可以催化FPP向法呢醇的转化。
目的:利用3种方法对新城疫(Newcastle disease virus, NDV)病毒进行检测并对这3种检测方法的优缺点做出比较。方法:分别将NDV强毒F48E9和弱毒Lasota接种SPF鸡胚后,获取尿囊液。利用双抗夹心ELISA法、悬液芯片系统以及RT-PCR进行检测。通过对制备的针对新城疫病毒的抗体4D9和6C4蛋白浓度测定后,选择6C4进行生物素标记,将4D9作为固相捕获抗体,利用生物素-链霉亲和素放大系统构建双抗夹心检测体系。通过对Genebank上已发表的新城疫强弱毒F基因进行电脑分析后,设计一组针对NDV强弱毒的通用型引物,分别对强弱毒进行RT-PCR并检测其检出限。结果:ELISA法对NDV强弱毒尿囊液的检出灵敏度为1:160,但操作繁琐,耗时长;液相芯片对强弱毒尿囊液的检出限为1:160和1:320,然而和ELISA相比,操作较为方便,但仪器设备昂贵。RT-PCR对强弱毒RNA检出限分别为259pg和14pg,与前两种方法相比,PR-PCR在核酸水平上对病毒进行检测,理论上灵敏度较高,但是所需试剂、设备昂贵,且实验人员还需一定的技能培训。
利用定点突变的方法提高Armillariella tabescens β-甘露聚糖酶MAN47的胰蛋白酶抗性。首先根据其氨基酸序列,找到胰蛋白酶的水解位点—赖氨酸(Lys, K)和精氨酸(Arg, R),再利用生物信息学软件获得酶分子结构中K和R与周围溶剂的接触程度,选定暴露程度最大的K280为候选突变位点,进行模拟突变,并分析突变前后的氢键键长和整体结构的变化。根据氢键键长的变化,确定突变体为K280N。对K280N设计突变引物,用重叠延伸PCR技术对MAN47野生型man基因进行突变,PCR产物与大肠杆菌-酿酒酵母穿梭表达载体PYCα连接,在大肠杆菌DH5α中扩增后转入酿酒酵母Saccharomyces cerevisiae,经人工肠液(pH 6.8 10mg/ml胰蛋白酶溶液)筛选,得到抗胰蛋白酶的最佳突变株。结果表明突变酶在用人工肠液处理180min后,其半衰期为173min,而野生型酶为99min,其他酶学性质与野生型酶基本一致。
目的:利用λ噬菌体Red重组系统敲除大肠杆菌O157:H7的waaL基因。方法:以pKD4为模板扩增出与waaL基因上下游同源的、含有卡那霉素抗性基因的PCR产物。然后电击转化到大肠杆菌 O157:H7 中,利用Red重组系统,通过卡那霉素抗性基因两侧的waaL基因序列在体内与waaL基因发生同源重组,置换了 O157:H7 基因组中的waaL基因。并进一步利用卡那霉素抗性基因两侧的FRT位点,通过FLP位点专一性重组将卡那霉素抗性基因敲除。结果:成功构建了敲除waaL基因且不带卡那霉素抗性基因的菌株。
基因敲除小鼠模型是在哺乳动物体内研究基因功能最可靠的方法之一。利用常规的分子克隆的方法构建基因打靶载体往往工作周期长,对于难度特别大的基因有时甚至无法完成打靶载体的构建。通过合理应用Red重组系统和低拷贝中间载体,利用50bp的同源重组序列直接从BAC载体中克隆了长片段的小鼠基因组序列;将得到的基因组序列再次通过重组和改造,构建了Gpr56等基因的完全敲除并带有报告基因的打靶载体,实现了打靶载体的快速构建。
为建立临床常见革兰氏阳性球菌的蛋白指纹库,为快速鉴定这些细菌奠定基础,收集了从临床中分离获得的185株革兰氏阳性球菌,包括金黄色葡萄球菌、表皮葡萄球菌、溶血性葡萄球菌、粪肠球菌和屎肠球菌。将这些菌株分成建模组和验证组,利用表面增强激光解析电离飞行时间质谱检测细菌蛋白,用ProteinChip和Biomarker Wizard软件对建模组细菌数据进行分析,筛选出每种细菌各自稳定表达的蛋白峰,并将数据导入自建的Fingerwave软件建立了临床常见革兰氏阳性球菌的蛋白指纹库。随后,将验证组细菌的蛋白峰数据与蛋白指纹库中蛋白峰数据进行相似度分析,以评价其鉴定符合率。建立了包含5种临床常见革兰氏阳性球菌的蛋白指纹库,利用其对验证组菌株进行鉴定,与应用传统微生物学鉴定及分子生物学方法获得的鉴定结果的符合率为100%。结果表明,进一步扩大并完善革兰氏阳性球菌的蛋白指纹库,将为临床病原菌的快速鉴定提供可能。
以转基因小麦B73-6-1为研究对象,通过染色体步行技术,成功分离到B73-6-1上pAHC25质粒外源基因插入位点的3'端旁侧序列,其扩增片段覆盖了转化载体及转基因小麦基因组旁侧序列。同时根据旁侧序列设计引物,建立品系特异性定性PCR检测方法,以典型的转基因作物证明该方法检测B73-6-1具有高特异性。该方法特异性好、灵敏度高, 可快速、准确、高效地检测转基因小麦B73-6-1品种。
镰刀菌是植物的重要病原真菌,其入侵植物体可引起镰刀菌病害,给农作物和其它植物的生产带来极大的危害。植物是抗性基因的重要来源之一,随着分子生物学技术的飞速发展,大量的镰刀菌相关抗性基因和抗性候选基因从不同的植物中被分离和鉴定,并应用于抗镰刀菌基因工程育种。对植物来源的镰刀菌抗性基因的种类及其作用机理、抗病候选基因、拟南芥-镰刀菌互作机制及基因调控进行了概述。
迄今为止,对纤溶活性蛋白(fibrinolytic protein)的检测主要有4种方法:纤维平板法(fibrin plate method)、显色底物法(colorimetric assay using chromogenic substrates)、反相纤维蛋白自显影法(reverse fibrin autography)和纤维蛋白酶谱法(fibrin zymography)。纤维平板法可以用来快速判断样品是否具有纤溶活性,同时,纤维平板法和显色底物法也可以用来对纤溶活性蛋白进行半定量分析。反相自显影法和纤维蛋白酶谱法则是两种较新的技术,主要用来对纤溶活性蛋白进行定性分析。详细阐述了这几种技术的发展过程、原理、优缺点和应用范围。