Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (1): 127-138    DOI: 10.13523/j.cb.2207046
    
Research Progress of Synthesis of 2'-Fucosyllactose by Yeast
YANG Yang,YAO Ming-dong,WANG Ying,XIAO Wen-hai**()
Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(904KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

2'-Fucosyllactose is the richest fucosylated oligosaccharide in human milk oligosaccharides, which has been widely used in infant food industry due to its beneficial effect on promoting the proliferation of Bifidobacterium and regulating the balance of intestinal flora. At present, 2'-fucosyllactose has been successfully synthesized in several hosts, such as Escherichia coli, Saccharomyces cerevisiae, Yarrowia lipolytica, Bacillus subtilis and Corynebacterium glutamicum. Previous studies on the biosynthesis of 2'-fucosyllactose in Escherichia coli have been reviewed. In consideration of food safety, consumers’ cognition and acceptance, yeast, as a GRAS strain, has more industrial and commercial prospects for the biosynthesis of 2'-fucosyllactose. However, there are few reviews on the biosynthesis of 2'-fucosyllactose in yeast. Firstly, the current situation and several common hosts of biosynthesis of 2'-fucosyllactose are introduced and compared. Then, some engineering strategies of biosynthesis of 2'-fucosyllactose by yeast are introduced from five aspects, such as substrate transport, the supply of precursor GDP-L-fucose, α-1,2-fucosyltransferase, product efflux and broadening of the substrate spectrum. Finally, several limiting factors of yeast in the biosynthesis of 2'-fucosyllactose are put forward and the future development trends and prospects are discussed.



Key words2'-Fucosyllactose      Yeast      α-1,2-Fucosyltransferase      Synthetic biology     
Received: 21 July 2022      Published: 14 February 2023
ZTFLH:  Q819  
Cite this article:

YANG Yang, YAO Ming-dong, WANG Ying, XIAO Wen-hai. Research Progress of Synthesis of 2'-Fucosyllactose by Yeast. China Biotechnology, 2023, 43(1): 127-138.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2207046     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I1/127

Fig.1 Functions and main synthetic methods of 2'-fucosyllactose
Fig.2 The biosynthetic pathway of 2'-fucosyllactose in yeast Lac12: Lactose permease; Pmi40: Mannose-6-phosphate isomerase; Sec53: Phosphomannomutase; Psa1: GDP-mannose pyrophosphorylase; CDT2: Cellodextrin transporter
底盘 优势 不足 产量现状 利用率 产率
/(g·L-1·
h-1)
参考文献
大肠
杆菌
代谢工程和合成生物学中应用最广泛的原核底盘;具有内源GDP-L-岩藻糖合成相关基因 可能的噬菌体和内毒素感染;GDP-L-岩藻糖是可拉酸的前体;存在乳糖代谢路径 100 g/L, 3 L
fed batch
- - [14-16,30]
枯草
芽孢
杆菌
GRAS;与真核表达系统相比,培养条件更简单,传代时间更短;目前未发现岩藻糖降解路径 代谢修饰导致生长较慢,产胞期影响发酵和蛋白酶分泌;相比大肠杆菌,可用的遗传元件和动态调控工具较少 5.01 g/L,
3 L fed batch
0.27 mol 2'-FL/
mol lactose,
0.85 mol 2'-FL/
mol fucose
0.1 [21-23]
谷氨
酸棒
杆菌
GRAS;具有内源基因manBmanC;较高的NADPH再生能力;GMP和GDP的含量高 基因编辑工具效率低;基因组中超过40%的基因功能未知 8.1 g/L,
2.5 L fed batch
0.42 mol 2'-FL/
mol lactose
0.07 [24-27]
酿酒
酵母
GRAS;代谢工程和合成生物学中应用最广泛的真核底盘;对苛刻的工业发酵条件有良好的耐受性;相对丰富的GDP-甘露糖胞内池 Crabtree effect;蛋白质的过度糖基化和低蛋白得率 26.63 g/L,
5 L fed batch
0.85 mol 2'-FL/
mol lactose
0.44 [13,28,30,33,37-38]
解脂
耶氏
酵母
GRAS;已用于类胡萝卜素、糖醇和核黄素等营养食品生产;在多种疏水性底物、碳源、pH和盐浓度条件下均可生长;高活性的三羧酸循环和磷酸戊糖途径 相比酿酒酵母,在代谢调控、遗传背景和生理特性等方面更复杂,可用的合成生物学工具较少 24 g/L, 2 L
fed batch
- 0.71 [29,38-39,42-43]
Table 1 Comparison of common hosts for the biosynthesis of 2'-fucosyllactose and examples
底盘 外源基因 策略 产量 产率/效率 参考文献
S.cerevisiae
D452-2
FKP-Bacteroides fragilis 9343、FucT2-Helicobacter pylori
Lac12-Kluyveromyces lactics
补救合成;筛选三种不同来源的FKP 0.503 g/L,125 mL fed batch 0.3 mol 2'-FL/mol lactose,0.63 mol 2'-FL/mol fucose [47]
S.cerevisiae
D452-2
Gmd,WcaG-E. coli K-12、
FucT2-Helicobacter pylori
Lac12-Kluyveromyces lactics
从头合成;优化乳糖浓度 0.51 g/L,125 mL fed batch 0.229 mol 2'-FL/mol lactose [44]
S.cerevisiae
PNY1500
GmdGMER-E. coli K-12、
FutC-Helicobacter pylori 26695、
Lac12-Kluyveromyces lactics
从头合成;筛选四种来源的Gmd-Gmer基因对;筛选四种来源的α-1, 2-岩藻糖基转移酶;增加α-1, 2-岩藻糖基转移酶的可溶性-N端融合SUMOstar标签;增加α-1, 2-岩藻糖基转移酶的拷贝数(双拷贝) 15 g/L,2 L fed batch 0.44 g/(L·h) [29]
底盘 外源基因 策略 产量 产率/效率 参考文献
Y.lipolytica
Y2224
Lac12-Kluyveromyces lactics
GmdGMER-Mortierella alpineFutC-Helicobacter pylori 26695
从头合成;增加Lac12GmdGMERFutC的拷贝数(双拷贝);增加α-1, 2-岩藻糖基转移酶的可溶性-N端融合;SUMOstar标签 24 g/L,2 L fed batch 0.71 g/(L·h) [29]
S.cerevisiae
D452-2
Lac12-Kluyveromyces lactics
GmdWcaG-E. coli K-12、
WbgL- E. coli O126
从头合成;木糖作为主要碳源;增加GmdWcaGWbgL的拷贝数(双拷贝) 25.5 g/L,1 L fed batch 0.35 g/(L·h),
0.82 mol 2'-
FL/mol lactose
[45]
S.cerevisiae
W303-1a
Lac12-Kluyveromyces lactics
GmdWcaG-E. coli K-12
从头合成;筛选不同来源的α-1, 2-岩藻糖基转移酶;过表达Sec53Psa1,增加GDP-甘露糖含量;删除gal80 26.63 g/L,5 L fed batch 0.44 g/(L·h),
0.85 mol 2'-
FL/mol lactose
[28]
Table 2 Examples of biosynthesis of 2'-fucosyllactose by yeast
[1]   Zhu Y Y, Wan L, Li W, et al. Recent advances on 2'-fucosyllactose: physiological properties, applications, and production approaches. Critical Reviews in Food Science and Nutrition, 2022, 62(8): 2083-2092.
doi: 10.1080/10408398.2020.1850413
[2]   Bode L, Jantscher-Krenn E. Structure-function relationships of human milk oligosaccharides. Advances in Nutrition, 2012, 3(3): 383S-391S.
doi: 10.3945/an.111.001404 pmid: 22585916
[3]   何竹筠, 杨波, 赵建新, 等. 双歧杆菌对母乳低聚糖利用的研究进展. 中国微生态学杂志, 2021, 33(7): 843-848, 856.
[3]   He Z J, Yang B, Zhao J X, et al. Advances in research on utilization of human milk oligosaccharides by bifidobacteria. Chinese Journal of Microecology, 2021, 33(7): 843-848, 856.
[4]   Borewicz K, Gu F J, Saccenti E, et al. Correlating infant fecal microbiota composition and human milk oligosaccharide consumption by microbiota of 1-month-old breastfed infants. Molecular Nutrition & Food Research, 2019, 63(13): 1801214.
[5]   Vázquez E, Barranco A, Ramírez M, et al. Effects of a human milk oligosaccharide, 2'-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. The Journal of Nutritional Biochemistry, 2015, 26(5): 455-465.
doi: 10.1016/j.jnutbio.2014.11.016
[6]   Newburg D S, Ruiz-Palacios G M, Morrow A L. Human milk glycans protect infants against enteric pathogens. Annual Review of Nutrition, 2005, 25: 37-58.
pmid: 16011458
[7]   杨宝雨, 赵军英, 乔为仓, 等. 母乳低聚糖的研究进展. 中国食品学报, 2021, 21(8): 369-390.
[7]   Yang B Y, Zhao J Y, Qiao W C, et al. Research progress of human milk oligosaccharides. Journal of Chinese Institute of Food Science and Technology, 2021, 21(8): 369-390.
[8]   史然, 江正强. 2'-岩藻糖基乳糖的酶法合成研究进展和展望. 合成生物学, 2020, 1(4): 481-494.
doi: 10.12211/2096-8280.2020-033
[8]   Shi R, Jiang Z Q. Enzymatic synthesis of 2'-fucosyllactose: advances and perspectives. Synthetic Biology Journal, 2020, 1(4): 481-494.
doi: 10.12211/2096-8280.2020-033
[9]   Agoston K, Hederos M J, Bajza I, et al. Kilogram scale chemical synthesis of 2'-fucosyllactose. Carbohydrate Research, 2019, 476: 71-77.
doi: S0008-6215(19)30068-0 pmid: 30921739
[10]   Pérez-Escalante E, Alatorre-Santamaría S, Castañeda-Ovando A, et al. Human milk oligosaccharides as bioactive compounds in infant formula: recent advances and trends in synthetic methods. Critical Reviews in Food Science and Nutrition, 2022, 62(1): 181-214.
doi: 10.1080/10408398.2020.1813683
[11]   Bych K, Mikš M H, Johanson T, et al. Production of HMOs using microbial hosts - from cell engineering to large scale production. Current Opinion in Biotechnology, 2019, 56: 130-137.
doi: S0958-1669(18)30131-9 pmid: 30502637
[12]   Coyne M J, Reinap B, Lee M M, et al. Human symbionts use a host-like pathway for surface fucosylation. Science, 2005, 307(5716): 1778-1781.
pmid: 15774760
[13]   Mattila P, Räbinä J, Hortling S, et al. Functional expression of Escherichia coli enzymes synthesizing GDP-L-fucose from inherent GDP-D-mannose in Saccharomyces cerevisiae. Glycobiology, 2000, 10(10): 1041-1047.
pmid: 11030750
[14]   帅玉英, 荣德明. 2'-岩藻糖基乳糖高产菌株及其制备方法和用途: 中国, CN202010379802.3. 2020-07-31[2022-06-23]. https://gfyhf651e95cfa18c4830hbpkq5uwvofvw6voxfbya.eds.tju.edu.cn/patent/patent.html?docno=CN202010379802.3&pnmno=CN111471637A&trsdb=fmzl&showList=true.
[14]   Shuai Y Y, Rong D M. 2'-Fucosyllactose high-yield strain, a preparation method and application: China, CN202010379802.3. 2020-07-31[2022-06-23]. https://gfyhf651e95cfa18c4830hbpkq5uwvofvw6voxfbya.eds.tju.edu.cn/patent/patent.html?docno=CN202010379802.3&pnmno=CN111471637A&trsdb=fmzl&showList=true.
[15]   Wünsche L. Importance of bacteriophages in fermentation processes. Acta Biotechnologica, 1989, 9(5): 395-419.
doi: 10.1002/abio.370090502
[16]   Rietschel E T, Brade H, Holst O, et al. Bacterial endotoxin: chemical constitution, biological recognition, host response, and immunological detoxification. Current Topics in Microbiology and Immunology, 1996, 216: 39-81.
pmid: 8791735
[17]   Zhao L, Tian R Z, Shen Q Y, et al. Pathway engineering of Bacillus subtilis for enhanced N-acetylneuraminic acid production via whole-cell biocatalysis. Biotechnology Journal, 2019, 14(7): 1800682.
doi: 10.1002/biot.201800682
[18]   Feng Y, Liu S, Jiao Y, et al. Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy. Applied Microbiology and Biotechnology, 2017, 101(4): 1509-1520.
doi: 10.1007/s00253-016-7816-x pmid: 27796436
[19]   Kumpfmüller J, Methling K, Fang L, et al. Production of the polyketide 6-deoxyerythronolide B in the heterologous host Bacillus subtilis. Applied Microbiology and Biotechnology, 2016, 100(3): 1209-1220.
doi: 10.1007/s00253-015-6990-6 pmid: 26432460
[20]   Westbrook A W, Ren X, Moo-Young M, et al. Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Biotechnology and Bioengineering, 2018, 115(1): 216-231.
doi: 10.1002/bit.26459 pmid: 28941282
[21]   Deng J Y, Gu L Y, Chen T C, et al. Engineering the substrate transport and cofactor regeneration systems for enhancing 2'-fucosyllactose synthesis in Bacillus subtilis. ACS Synthetic Biology, 2019, 8(10): 2418-2427.
doi: 10.1021/acssynbio.9b00314
[22]   Gu Y, Xu X H, Wu Y K, et al. Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications. Metabolic Engineering, 2018, 50: 109-121.
doi: 10.1016/j.ymben.2018.05.006
[23]   Zhang Q W, Wu Y K, Gong M Y, et al. Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain. Essays in Biochemistry, 2021, 65(2): 173-185.
doi: 10.1042/EBC20210011
[24]   Chin Y W, Park J B, Park Y C, et al. Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose. Bioprocess and Biosystems Engineering, 2013, 36(6): 749-756.
doi: 10.1007/s00449-013-0900-z
[25]   Seo J H, Chin Y W, Jo H Y, Method of producing 2'-fucosyllactose using corynebacterium glutamicum: USA, US20180298389A1. 2018-10-18[2022-06-23]. https://hfyhf651e95cfa18c4830hwwx5pvxbbvuq6wukfbya.eds.tju.edu.cn/searchresult/default.html.
[26]   Liu J, Xu J Z, Rao Z M, et al. Industrial production of L-lysine in Corynebacterium glutamicum: progress and prospects. Microbiological Research, 2022, 262: 127101.
doi: 10.1016/j.micres.2022.127101
[27]   王钰, 郑平, 孙际宾. 谷氨酸棒杆菌的代谢工程使能技术研究进展. 生物工程学报, 2021, 37(5): 1603-1618.
doi: 10.13345/j.cjb.200649 pmid: 34085445
[27]   Wang Y, Zheng P, Sun J B. Recent advances in developing enabling technologies for Corynebacterium glutamicum metabolic engineering. Chinese Journal of Biotechnology, 2021, 37(5): 1603-1618.
doi: 10.13345/j.cjb.200649 pmid: 34085445
[28]   Xu M Y, Meng X F, Zhang W X, et al. Improved production of 2'-fucosyllactose in engineered Saccharomyces cerevisiae expressing a putative α-1, 2-fucosyltransferase from Bacillus cereus. Microbial Cell Factories, 2021, 20(1): 165.
doi: 10.1186/s12934-021-01657-5
[29]   Hollands K, Baron C M, Gibson K J, et al. Engineering two species of yeast as cell factories for 2'-fucosyllactose. Metabolic Engineering, 2019, 52: 232-242.
doi: S1096-7176(18)30279-9 pmid: 30557615
[30]   Liu Y F, Liu L, Li J H, et al. Synthetic biology toolbox and chassis development in Bacillus subtilis. Trends in Biotechnology, 2019, 37(5): 548-562.
doi: 10.1016/j.tibtech.2018.10.005
[31]   Borodina I, Nielsen J. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnology Journal, 2014, 9(5): 609-620.
doi: 10.1002/biot.201300445 pmid: 24677744
[32]   Hong K K, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cellular and Molecular Life Sciences, 2012, 69(16): 2671-2690.
doi: 10.1007/s00018-012-0945-1
[33]   Basso L C, de Amorim H V, de Oliveira A J, et al. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Research, 2008, 8(7): 1155-1163.
doi: 10.1111/j.1567-1364.2008.00428.x pmid: 18752628
[34]   Järvinen N, Mäki M, Räbinä J, et al. Cloning and expression of Helicobacter pylori GDP-l-fucose synthesizing enzymes (GMD and GMER) in Saccharomyces cerevisiae. European Journal of Biochemistry, 2001, 268(24): 6458-6464.
pmid: 11737200
[35]   Nakayama K I, Maeda Y, Jigami Y. Interaction of GDP-4-keto-6-deoxymannose-3, 5-epimerase-4-reductase with GDP-mannose-4, 6-dehydratase stabilizes the enzyme activity for formation of GDP-fucose from GDP-mannose. Glycobiology, 2003, 13(10): 673-680.
doi: 10.1093/glycob/cwg099
[36]   Sreekrishna K, Dickson R C. Construction of strains of Saccharomyces cerevisiae that grow on lactose. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82(23): 7909-7913.
[37]   Baghban R, Farajnia S, Rajabibazl M, et al. Yeast expression systems: overview and recent advances. Molecular Biotechnology, 2019, 61(5): 365-384.
doi: 10.1007/s12033-019-00164-8 pmid: 30805909
[38]   赵禹, 赵雅坤, 刘士琦, 等. 非常规酵母的分子遗传学及合成生物学研究进展. 微生物学报, 2020, 60(8): 1574-1591.
[38]   Zhao Y, Zhao Y K, Liu S Q, et al. Advances in molecular genetics and synthetic biology tools in unconventional yeasts. Acta Microbiologica Sinica, 2020, 60(8): 1574-1591.
[39]   Bilal M, Xu S, Iqbal H M N, et al. Yarrowia lipolytica as an emerging biotechnological chassis for functional sugars biosynthesis. Critical Reviews in Food Science and Nutrition, 2021, 61(4): 535-552.
doi: 10.1080/10408398.2020.1739000
[40]   Markham K A, Alper H S. Synthetic biology expands the industrial potential of Yarrowia lipolytica. Trends in Biotechnology, 2018, 36(10): 1085-1095.
doi: S0167-7799(18)30139-2 pmid: 29880228
[41]   Miller K K, Alper H S. Yarrowia lipolytica: more than an oleaginous workhorse. Applied Microbiology and Biotechnology, 2019, 103(23-24): 9251-9262.
doi: 10.1007/s00253-019-10200-x pmid: 31686142
[42]   张金宏, 崔志勇, 祁庆生, 等. 解脂耶氏酵母表达调控工具的开发及天然产物合成的研究进展. 生物工程学报, 2022, 38(2): 478-505.
[42]   Zhang J H, Cui Z Y, Qi Q S, et al. The recent advances in developing gene editing and expression tools and the synthesis of natural products in Yarrowia lipolytica. Chinese Journal of Biotechnology, 2022, 38(2): 478-505.
[43]   Blank L M, Lehmbeck F, Sauer U. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Research, 2005, 5(6-7): 545-558.
doi: 10.1016/j.femsyr.2004.09.008 pmid: 15780654
[44]   Liu J J, Kwak S, Pathanibul P, et al. Biosynthesis of a functional human milk oligosaccharide, 2'-fucosyllactose, and L-fucose using engineered Saccharomyces cerevisiae. ACS Synthetic Biology, 2018, 7(11): 2529-2536.
doi: 10.1021/acssynbio.8b00134
[45]   Lee J W, Kwak S, Liu J J, et al. Enhanced 2'-Fucosyllactose production by engineered Saccharomyces cerevisiae using xylose as a co-substrate. Metabolic Engineering, 2020, 62: 322-329.
doi: 10.1016/j.ymben.2020.10.003
[46]   Lodi T, Donnini C. Lactose-induced cell death of beta-galactosidase mutants in Kluyveromyces lactis. FEMS Yeast Research, 2005, 5(8): 727-734.
doi: 10.1016/j.femsyr.2005.01.005
[47]   Yu S, Liu J J, Yun E J, et al. Production of a human milk oligosaccharide 2'-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2018, 17(1): 101.
doi: 10.1186/s12934-018-0947-2
[48]   Stein D, Lin Y N, Lin C H. Characterization of Helicobacter pylori α 1, 2-fucosyltransferase for enzymatic synthesis of tumor-associated antigens. Advanced Synthesis & Catalysis, 2008, 350(14-15): 2313-2321.
[49]   Li C, Wu M, Gao X, et al. Efficient biosynthesis of 2'-fucosyllactose using an in vitro multienzyme cascade. Journal of Agricultural and Food Chemistry, 2020, 68(39): 10763-10771.
doi: 10.1021/acs.jafc.0c04221
[50]   Wang G, Boulton P G, Chan N W C, et al. Novel Helicobacter pylori alpha 1, 2-fucosyltransferase, a key enzyme in the synthesis of Lewis antigens. Microbiology (Reading, England), 1999, 145 (Pt 11): 3245-3253.
doi: 10.1099/00221287-145-11-3245
[51]   Engels L, Elling L. WbgL: a novel bacterial α 1, 2-fucosyltransferase for the synthesis of 2'-fucosyllactose. Glycobiology, 2014, 24(2): 170-178.
doi: 10.1093/glycob/cwt096
[52]   Huang D, Yang K X, Liu J, et al. Metabolic engineering of Escherichia coli for the production of 2'-fucosyllactose and 3-fucosyllactose through modular pathway enhancement. Metabolic Engineering, 2017, 41: 23-38.
doi: S1096-7176(16)30233-6 pmid: 28286292
[53]   Eriksen D T, Lian J Z, Zhao H M. Protein design for pathway engineering. Journal of Structural Biology, 2014, 185(2): 234-242.
doi: 10.1016/j.jsb.2013.03.011 pmid: 23558037
[54]   de D R H. The Crabtree effect: a regulatory system in yeast. Journal of General Microbiology, 1966, 44(2): 149-156.
doi: 10.1099/00221287-44-2-149 pmid: 5969497
[55]   Matsushika A, Goshima T, Hoshino T. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microbial Cell Factories, 2014, 13: 16.
doi: 10.1186/1475-2859-13-16 pmid: 24467867
[56]   Feng X Y, Zhao H M. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microbial Cell Factories, 2013, 12: 114.
doi: 10.1186/1475-2859-12-114
[57]   Jin Y S, Laplaza J M, Jeffries T W. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Applied and Environmental Microbiology, 2004, 70(11): 6816-6825.
doi: 10.1128/AEM.70.11.6816-6825.2004
[58]   Foy J J, Bhattacharjee J K. Gluconeogenesis in Saccharomyces cerevisiae: determination of fructose-1, 6-bisphosphatase activity in cells grown in the presence of glycolytic carbon sources. Journal of Bacteriology, 1977, 129(2): 978-982.
doi: 10.1128/jb.129.2.978-982.1977 pmid: 190213
[59]   Guan N Z, Shin H D, Long L F, et al. TCA cycle-powered synthesis of fucosylated oligosaccharides. Glycobiology, 2018, 28(7): 468-473.
doi: 10.1093/glycob/cwy047 pmid: 29800149
[60]   de Kok S, Kozak B U, Pronk J T, et al. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering. FEMS Yeast Research, 2012, 12(4): 387-397.
doi: 10.1111/j.1567-1364.2012.00799.x
[61]   Pfeiffer T, Morley A. An evolutionary perspective on the Crabtree effect. Frontiers in Molecular Biosciences, 2014, 1: 17.
doi: 10.3389/fmolb.2014.00017 pmid: 25988158
[62]   Verduyn C. Physiology of yeasts in relation to biomass yields. Antonie van Leeuwenhoek, 1991, 60(3-4): 325-353.
pmid: 1807201
[63]   Kim S R, Xu H Q, Lesmana A, et al. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2015, 81(5): 1601-1609.
doi: 10.1128/AEM.03474-14
[64]   Guimarães P M R, Multanen J P, Domingues L, et al. Stimulation of zero-trans rates of lactose and maltose uptake into yeasts by preincubation with hexose to increase the adenylate energy charge. Applied and Environmental Microbiology, 2008, 74(10): 3076-3084.
doi: 10.1128/AEM.00188-08 pmid: 18378647
[65]   Kwak S, Kim S R, Xu H Q, et al. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2017, 114(11): 2581-2591.
doi: 10.1002/bit.26369
[66]   Pilauri V, Bewley M, Diep C, et al. Gal80 dimerization and the yeast GAL gene switch. Genetics, 2005, 169(4): 1903-1914.
doi: 10.1534/genetics.104.036723
[67]   Lv X M, Xie W P, Lu W Q, et al. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. Journal of Biotechnology, 2014, 186: 128-136.
doi: 10.1016/j.jbiotec.2014.06.024
[68]   Parschat K, Schreiber S, Wartenberg D, et al. High-titer de novo biosynthesis of the predominant human milk oligosaccharide 2'-fucosyllactose from sucrose in Escherichia coli. ACS Synthetic Biology, 2020, 9(10): 2784-2796.
doi: 10.1021/acssynbio.0c00304
[69]   Albermann C, Piepersberg W, Wehmeier U F. Synthesis of the milk oligosaccharide 2'-fucosyllactose using recombinant bacterial enzymes. Carbohydrate Research, 2001, 334(2): 97-103.
pmid: 11502265
[70]   de Pourcq K, de Schutter K, Callewaert N. Engineering of glycosylation in yeast and other fungi: current state and perspectives. Applied Microbiology and Biotechnology, 2010, 87(5): 1617-1631.
doi: 10.1007/s00253-010-2721-1 pmid: 20585772
[71]   Ni Z J, Li Z K, Wu J Y, et al. Multi-path optimization for efficient production of 2'-fucosyllactose in an engineered Escherichia coli C 41 (DE3) derivative. Frontiers in Bioengineering and Biotechnology, 2020, 8: 611900.
doi: 10.3389/fbioe.2020.611900
[72]   Postma P W, Lengeler J W, Jacobson G R. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiological Reviews, 1993, 57(3): 543-594.
doi: 10.1128/mr.57.3.543-594.1993 pmid: 8246840
[73]   Lee W H, Han N S, Park Y C, et al. Modulation of guanosine 5'-diphosphate-d-mannose metabolism in recombinant Escherichia coli for production of guanosine 5'-diphosphate-L-fucose. Bioresource Technology, 2009, 100(24): 6143-6148.
doi: 10.1016/j.biortech.2009.07.035
[74]   Chemler J A, Fowler Z L, McHugh K P, et al. Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metabolic Engineering, 2010, 12(2): 96-104.
doi: 10.1016/j.ymben.2009.07.003 pmid: 19628048
[75]   Lian J Z, Mishra S, Zhao H M. Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications. Metabolic Engineering, 2018, 50: 85-108.
doi: 10.1016/j.ymben.2018.04.011
[76]   Sauer U, Canonaco F, Heri S, et al. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. Journal of Biological Chemistry, 2004, 279(8): 6613-6619.
doi: 10.1074/jbc.M311657200 pmid: 14660605
[77]   Lee W H, Chin Y W, Han N S, et al. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli. Applied Microbiology and Biotechnology, 2011, 91(4): 967-976.
doi: 10.1007/s00253-011-3271-x
[78]   Li M L, Li C C, Hu M M, et al. Metabolic engineering strategies of de novo pathway for enhancing 2'-fucosyllactose synthesis in Escherichia coli. Microbial Biotechnology, 2022, 15(5): 1561-1573.
doi: 10.1111/1751-7915.13977
[79]   Lee W H, Shin S Y, Kim M D, et al. Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-L-fucose production in recombinant Escherichia coli. Applied Microbiology and Biotechnology, 2012, 93(6): 2327-2334.
doi: 10.1007/s00253-011-3776-3
[80]   Petschacher B, Nidetzky B. Biotechnological production of fucosylated human milk oligosaccharides: prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. Journal of Biotechnology, 2016, 235: 61-83.
doi: 10.1016/j.jbiotec.2016.03.052 pmid: 27046065
[81]   Schuler M A, Werck-Reichhart D. Functional genomics of P450s. Annual Review of Plant Biology, 2003, 54: 629-667.
pmid: 14503006
[82]   Chin Y W, Kim J Y, Kim J H, et al. Improved production of 2'-fucosyllactose in engineered Escherichia coli by expressing putative α-1, 2-fucosyltransferase, WcfB from Bacteroides fragilis. Journal of Biotechnology, 2017, 257: 192-198.
doi: 10.1016/j.jbiotec.2016.11.033
[83]   Chin Y W, Kim J Y, Lee W H, et al. Enhanced production of 2'-fucosyllactose in engineered Escherichia coli BL21star (DE3) by modulation of lactose metabolism and fucosyltransferase. Journal of Biotechnology, 2015, 210: 107-115.
doi: 10.1016/j.jbiotec.2015.06.431
[84]   Zhao C, Wu Y, Yu H, et al. The one-pot multienzyme (OPME) synthesis of human blood group H antigens and a human milk oligosaccharide (HMOS) with highly active Thermosynechococcus elongates α 1-2-fucosyltransferase. Chemical Communications (Cambridge, England), 2016, 52(20): 3899-3902.
doi: 10.1039/C5CC10646J
[85]   Li M, Shen J, Liu X W, et al. Identification of a new alpha 1, 2-fucosyltransferase involved in O-antigen biosynthesis of Escherichia coli O86: B7 and formation of H-type 3 blood group antigen. Biochemistry, 2008, 47(44): 11590-11597.
doi: 10.1021/bi801067s
[86]   Lin L, Gong M Y, Liu Y F, et al. Combinatorial metabolic engineering of Escherichia coli for de novo production of 2'-fucosyllactose. Bioresource Technology, 2022, 351: 126949.
doi: 10.1016/j.biortech.2022.126949
[87]   Park B S, Choi Y H, Kim M W, et al. Enhancing biosynthesis of 2'-fucosyllactose in Escherichia coli through engineering lactose operon for lactose transport and α-1, 2-fucosyltransferase for solubility. Biotechnology and Bioengineering, 2022, 119(5): 1264-1277.
doi: 10.1002/bit.28048
[88]   Galanie S, Thodey K, Trenchard I J, et al. Complete biosynthesis of opioids in yeast. Science, 2015, 349(6252): 1095-1100.
doi: 10.1126/science.aac9373 pmid: 26272907
[89]   Chen R B, Yang S, Zhang L, et al. Advanced strategies for production of natural products in yeast. iScience, 2020, 23(3): 100879.
doi: 10.1016/j.isci.2020.100879
[90]   Cirino P C, Arnold F H. Exploring the diversity of heme enzymes through directed evolution. Directed Molecular Evolution of Proteins, 2002, 10: 215-243.
[91]   Eslami M, Adler A, Caceres R S, et al. Artificial intelligence for synthetic biology. Communications of the ACM, 2022, 65(5): 88-97.
[92]   Raschmanová H, Weninger A, Glieder A, et al. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: current state and future prospects. Biotechnology Advances, 2018, 36(3): 641-665.
doi: S0734-9750(18)30006-5 pmid: 29331410
[93]   Qiu C X, Zhai H T, Hou J. Biosensors design in yeast and applications in metabolic engineering. FEMS Yeast Research, 2019, 19(8): foz082.
doi: 10.1093/femsyr/foz082
[94]   Guirimand G, Kulagina N, Papon N, et al. Innovative tools and strategies for optimizing yeast cell factories. Trends in Biotechnology, 2021, 39(5): 488-504.
doi: 10.1016/j.tibtech.2020.08.010 pmid: 33008642
[1] BIAN Yi-fan,LIU Shu-han,ZHANG Bei-meng,ZHANG Yu-long,LI Xin-tong,WANG Peng-chao. Advances in Microbial Synthesis of 2-Phenylethanol[J]. China Biotechnology, 2022, 42(8): 128-136.
[2] Chun-lei CAO,Pei-bin YU,Dian-hui WU,Guo-lin CAI. Screening of Several Strains of Brewer’s Yeast Strains and Comparison of Their Fermentability[J]. China Biotechnology, 2022, 42(7): 45-53.
[3] Xue-xia ZENG,Yu DAN,Shao-ming MAO,Jia-hui SUN,Guo-dong LUAN,Xue-feng LV. Research Progress on the Cyanobacterial Photosynthetic Production of Sugars Utilizing Carbon Dioxide[J]. China Biotechnology, 2022, 42(7): 90-100.
[4] ZHANG Da-lu,GE Qi,FENG Yi-bo,CHEN Wei-gang. Comparison and Analysis on Scientific Research Programs on DNA Data Storage[J]. China Biotechnology, 2022, 42(6): 116-129.
[5] BAI Song,HOU Zheng-jie,GAO Geng-rong,QIAO Bin,CHENG Jing-sheng. Advances in the Synthesis of Odd-chain Fatty Acids by Microorganisms[J]. China Biotechnology, 2022, 42(6): 76-85.
[6] LIANG Shi-yu,WAN Li,GUO Xiao-jia,WANG Xue-ying,LV Li-ting,HU Ying-han,ZHAO Zong-bao. Engineered Rhodosporidium toruloides Strains Capable of Biosynthesizing a Non-natural Cofactor[J]. China Biotechnology, 2022, 42(5): 58-68.
[7] LIU Ming-zhu,ZHANG Liang,GUO Fang,LI Chun,FENG Xu-dong. Construction of Yeast Surface Display System and Application in Cellulose Degrading[J]. China Biotechnology, 2022, 42(5): 91-99.
[8] YE Zi-yu,DING Xiang,LU Yan,ZHOU Li-qian,LIU Xin-lan,PU Di-hong,HOU Yi-ling. Effects of pmr1 Gene Deletion on Sexual Reproduction and Mitosis of Fission Yeast Cells and Its Molecular Mechanism[J]. China Biotechnology, 2022, 42(12): 12-26.
[9] ZHAO Chi-hong,SU Dan-dan,LI Chun,WU Zong-zhen,ZUO Kun-lan,XU Yan-long,LIU Huan. Synthetic Biology Risks and Biosafety Strategies in the View of Overall National Security Concept[J]. China Biotechnology, 2022, 42(12): 120-128.
[10] Chun-li HAN,Han-jie WANG. Advances of Engineered Live Biotherapeutics in Tumor Immunotherapy[J]. China Biotechnology, 2022, 42(10): 39-50.
[11] Hui-min LI,Bin JIA,Xia LI,Duo LIU. Advances in Engineering Yeast Chassis for Producing Aromatic Compounds[J]. China Biotechnology, 2022, 42(10): 80-92.
[12] ZHANG Yao,QIU Xiao-man,SUN Hao,GUO Lei,HONG Hou-sheng. The Industrial Applications of Saccharomyces cerevisiae[J]. China Biotechnology, 2022, 42(1/2): 26-36.
[13] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[14] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[15] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.