Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (12): 12-26    DOI: 10.13523/j.cb.2204077
    
Effects of pmr1 Gene Deletion on Sexual Reproduction and Mitosis of Fission Yeast Cells and Its Molecular Mechanism
YE Zi-yu1,DING Xiang2,LU Yan1,ZHOU Li-qian1,LIU Xin-lan2,PU Di-hong1,HOU Yi-ling1,**()
1 Key Laboratory of Southwest China Wildlife Resource Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
2 College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
Download: HTML   PDF(3140KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: The pmr1 gene encodes P-type calcium-transporting ATPase Pmr1, which is involved in maintaining cell wall integrity and regulating cytokinesis. In this study, fission yeast was used as a model cell to explore the effects of pmr1 deletion on the sexual reproduction and dynamics of actin rings during cell mitosis, and to reveal the key genes and metabolic pathways of abnormal cell mitosis after pmr1 deletion. Methods: The effects of pmr1 deletion on cell mitosis and sexual reproduction were detected by cell growth rate measurement, spore production observation and statistics, green fluorescent protein-labeled monitoring and living cell imaging; The wild-type and pmr1Δ strain were sequenced by RNA-Seq and analyzed by bioinformatics, and verified by qRT-PCR. Results: The pmr1 deletion could slow down cell growth, decrease cell length in mitosis, increase length of sexually reproductive ascospore, and increase formation time of actin ring. RNA-sequencing results revealed that down-regulation of mfm1, mfm2 and mat1-Mc, up-regulation of cdc1 and exo1 in the mismatch repair pathway, and down-regulation of pgi1, pfk1 and dld1 in the glycolysis/gluconeogenesis pathway are the main factor of the increased spore length in the pmr1Δ; Meanwhile, the down-regulation of tdh1 and pgk1 in the glycolysis/gluconeogenesis pathway and the down-regulation of fas1, fas2, cut6 and lcf1 in the fatty acid anabolic pathway also led to the decreased cell length in mitosis of pmr1Δ; The up-regulation of hsp9 is the key gene that affected the formation time of actin ring in pmr1Δ. qRT-PCR experiments confirmed that the expression trends of key genes after pmr1 deletion were consistent with the RNA-Seq results. Conclusion: After pmr1 deletion, the mismatch repair pathway, glycolysis/gluconeogenesis pathway and fatty acid anabolic pathway are hindered in fission yeast cells, resulting in abnormal cell and spore morphology, obstruction of actin ring formation, and slowing down of cell proliferation.



Key wordspmr1 gene      Fission yeast      Cell division      RNA-Seq      Metabolic pathway     
Received: 29 April 2022      Published: 05 January 2023
ZTFLH:  Q932  
Corresponding Authors: Yi-ling HOU     E-mail: starthlh@126.com
Cite this article:

YE Zi-yu,DING Xiang,LU Yan,ZHOU Li-qian,LIU Xin-lan,PU Di-hong,HOU Yi-ling. Effects of pmr1 Gene Deletion on Sexual Reproduction and Mitosis of Fission Yeast Cells and Its Molecular Mechanism. China Biotechnology, 2022, 42(12): 12-26.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2204077     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I12/12

Fig.1 Location, protein structure and protein conserved domain of pmr1 gene (a) Location of pmr1 gene (b) Pmr1 protein structure (c) Pmr1 protein conserved domain
Strains Genotype
PT.286 h- wt
PT.287 h+ wt
PT.3850 h+ wt: Pact1-LifeAct-mGFP: LEU1
22 h- pmr1Δ: kanR
22B h? pmr1Δ: Pact1-LifeAct-mGFP: LEU1
Table 1 Strains and genotypes in the experimental
Fig.2 Effects of pmr1 gene deletion on cell growth and ascospores at 25℃ (a) Growth rate of strain (b) Spore morphology of cell (c) Statistics of sporulation (n=150) (d) Statistics of ascospore length (n=120)
Fig.3 Effects of pmr1 gene deletion on cell length and actin ring localization (a) Five periods of dynamic changes of actin in cells (b) The initial length of cells in interphase (c) Length of cells in metaphase (d) Length of the contractile ring from the proximal cell wall (e) Length of the contractile ring from the distal cell wall (f) The ratio of the length of the contractile ring to the cell wall at both ends (n=60)
Fig.4 Effects of pmr1 gene deletion on formation time, contraction time and contraction rate of actin ring (a) Time-lapse images of actin ring dynamics (b) Kinetic curve of actin ring (c) The initial length of actin ring (d) The formation time of actin ring (e) The contraction time and contraction rate of actin ring (n=30)
Sample Clean reads Clean bases Error rate Q30 / % GC content
wt_1 46 447 832 6.97 G 0.02 94.57 41.43
wt_2 45 173 776 6.78 G 0.02 95.09 41.41
wt_3 44 388 600 6.66 G 0.03 94.11 41.23
pmr1_1 41 279 024 6.19 G 0.02 95.31 41.27
pmr1_2 41 845 000 6.28 G 0.02 95.46 41.35
pmr1_3 44 284 874 6.64 G 0.02 94.81 40.94
Table 2 Transcriptome sequencing data quality statistics
Gene name FPKM(wt) FPKM(pmr1Δ) Gene description
gpd3 15 353.453 88 15 959.829 08 Glyceraldehyde 3-phosphate dehydrogenase Gpd3
zym1 13 760.905 16 14 307.039 34 Metallothionein Zym1
hsp9 7 879.472 53 8 560.037 92 Heat shock protein Hsp9
hsp16 6 429.324 40 6 194.116 955 Heat shock protein Hsp16
eno101 5 927.174 232 6 461.217 911 Enolase
fba1 6 012.452 647 5 818.516 153 Fructose-bisphosphate aldolase Fba1
tdh1 5 679.168 434 4 102.244 391 Glyceraldehyde-3-phosphate dehydrogenase Tdh1
pgk1 4 919.322 538 3 933.365 814 Phosphoglycerate kinase Pgk1
tef103 4 107.470 752 3 890.983 788 Translation elongation factor EF-1 alpha Ef1a-c
gpm1 3 555.484 13 3 820.980 92 Monomeric 2, 3-bisphosphoglycerate (BPG)-dependent phosphoglycerate mutase (PGAM), Gpm1
pex7 3 358.379 28 3 569.658 727 Peroxin-7
pyk1 3 488.753 815 3 564.304 155 Pyruvate kinase
lsd90 3 488.525 293 2 542.280 536 Lsd90 protein
hry1 3 423.976 852 2 454.672 867 HHE domain cation binding protein
ole1 3 069.993 526 2 462.650 536 Acyl-CoA desaturase
Table 3 Statistics of high-expressed genes in wt and pmr1 (FPKM>3 000 means extremely high expression)
Gene name Log2FoldChange Padj Gene description
mat2-Pc 12.589 4 4.48×10-24 Silenced P-specific polypeptide Pc
mat2-Pi 9.057 1 5.97×10-12 Silenced P-specific polypeptide Pi
Tf2-13 8.503 3 2.58×10-10 Retro transposable element/transposon Tf2-type
ftm4 5.942 7 2.68×10-168 S.pombe specific 5Tm protein family
gdt1 4.297 2 0.00 Human TMEM165 homolog, implicated in calcium transport
pdc102 4.157 6 8.62×10-5 Pyruvate decarboxylase
mat1-Mi 3.759 4 4.91×10-11 Mating-type M-specific polypeptide Mm/Mi
fub2 1.577 6 3.94×10-51 PI31 proteasome regulator Fub2
map3 1.503 9 4.23×10-20 Pheromone M-factor receptor Map3
mal1 1.45 7.07×10-96 Maltase alpha-glucosidase Mal1
prl24 1.326 4 3.44×10-6 Non-coding RNA, poly(A)-bearing
nam3 1.297 2 3.68×10-3 LncRNA nam3
cox1 1.277 9 5.69×10-4 Cytochrome C oxidase subunit 1
isp3 1.046 7 1.03×10-8 Spore wall structural constituent Isp3
Table 4 Differentially expressed genes up-regulated in wt and pmr1Δ (log2FoldChange≥ 1 )
Gene name Log2FoldChange Padj Gene description
mat3-Mc -6.721 4 3.54×10-5 Mating-type m-specific HMG-box transcription factor Mc at silenced MAT3 locus
mat1-Mc -5.202 4 1.50×10-2 Mating-type m-specific polypeptide Mc
mfm2 -4.271 2 0.00 M-factor precursor Mfm2
mfm1 -2.902 0 1.57×10-78 M-factor precursor Mfm1
mam1 -1.664 9 9.75×10-115 M-factor transmembrane transporter Mam1
ght3 -1.555 4 1.20×10-54 Hexose transmembrane transporter Ght3
cig2 -1.239 3 2.30×10-6 G1/S-specific B-type cyclin Cig2
hsp3103 -1.031 0 1.99×10-35 ThiJ domain protein
cta3 -1.005 0 1.06×10-5 P-type ATPase, potassium exporting Cta3
Table 5 Differentially expressed genes down-regulated in wt and pmr1Δ ( log2FoldChange≤ -1 )
Fig.5 Volcano plot of differentially expressed genes
Fig.6 GO enrichment of all differentially expressed genes
Fig.7 KEGG enrichment of all differentially expressed genes
Fig.8 Metabolic pathway enrichment of differentially expressed genes a) Glycolysis/Gluconeogenesis pathway (b) Fatty acid biosynthesis pathway (c) Mismatch repair pathway. Blue indicates down-regulated genes, red indicates up-regulated genes
Fig.9 qRT-PCR verification of key differentially expressed genes
[1]   Rincon S A, Paoletti A. Molecular control of fission yeast cytokinesis. Seminars in Cell & Developmental Biology, 2016, 53: 28-38.
[2]   Hayles J, Nurse P. Introduction to fission yeast as a model system. Cold Spring Harbor Protocols, 2018, 2018(5). DOI: 10.1101/pdb.top079749.
doi: 10.1101/pdb.top079749
[3]   战春君, 李翔, 刘国强, 等. 巴斯德毕赤酵母甘油转运体的发现及功能研究. 中国生物工程杂志, 2017, 37(7): 48-55.
[3]   Zhan C J, Li X, Liu G Q, et al. Identification of glycerol transporter in Pichia pastoris and function research. China Biotechnology, 2017, 37(7): 48-55.
[4]   谭秀梅, 丁祥, 袁荣美, 等. 线粒体膜蛋白mgr2基因的缺失导致裂殖酵母细胞动力学变化的研究. 基因组学与应用生物学, 2021, 40(S1): 2068-2075.
[4]   Tan X M, Ding X, Yuan R M, et al. The study of loss of mitochondrial membrane protein mgr 2 gene results in changes of cell dynamics in fission yeast. Genomics and Applied Biology, 2021, 40(S1): 2068-2075.
[5]   Nakazawa N, Xu X Y, Arakawa O, et al. Coordinated roles of the putative ceramide-conjugation protein, Cwh43, and a Mn2+-transporting, P-type ATPase, Pmr1, in fission yeast. G3(Bethesda), 2019, 9(8): 2667-2676.
[6]   Cortés J C G, Katoh-Fukui R, Moto K, et al. Schizosaccharomyces pombe Pmr1p is essential for cell wall integrity and is required for polarized cell growth and cytokinesis. Eukaryotic Cell, 2004, 3(5): 1124-1135.
doi: 10.1128/EC.3.5.1124-1135.2004
[7]   Maeda T, Sugiura R, Kita A, et al. Pmr1, a P-type ATPase, and Pdt1, an Nramp homologue, cooperatively regulate cell morphogenesis in fission yeast: the importance of Mn2+ homeostasis. Genes to Cells, 2004, 9(1): 71-82.
doi: 10.1111/j.1356-9597.2004.00699.x
[8]   Ma Y, Sugiura R, Koike A, et al. Transient receptor potential (TRP) and Cch1-Yam 8 channels play key roles in the regulation of cytoplasmic Ca2+ in fission yeast. PLoS One, 2011, 6(7): e22421.
doi: 10.1371/journal.pone.0022421
[9]   Caetano C, Limbo O, Farmer S, et al. Tolerance of deregulated G1/S transcription depends on critical G1/S regulon genes to prevent catastrophic genome instability. Cell Reports, 2014, 9(6): 2279-2289.
doi: 10.1016/j.celrep.2014.11.039 pmid: 25533348
[10]   Poddar A, Sidibe O, Ray A, et al. Calcium spikes accompany cleavage furrow ingression and cell separation during fission yeast cytokinesis. Molecular Biology of the Cell, 2021, 32(1): 15-27.
doi: 10.1091/mbc.E20-09-0609 pmid: 33175606
[11]   Ryan C J, Roguev A, Patrick K, et al. Hierarchical modularity and the evolution of genetic interactomes across species. Molecular Cell, 2012, 46(5): 691-704.
doi: 10.1016/j.molcel.2012.05.028 pmid: 22681890
[12]   Hu Z L, Bonifas J M, Beech J, et al. Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease. Nature Genetics, 2000, 24(1): 61-65.
pmid: 10615129
[13]   Büttner S, Faes L, Reichelt W N, et al. The Ca2+/Mn2+ ion-pump PMR1 links elevation of cytosolic Ca2+ levels to α-synuclein toxicity in Parkinson’s disease models. Cell Death & Differentiation, 2013, 20(3): 465-477.
[14]   房彦平, 季爱民, 杨月莲, 等. 沉默PMR1表达促进胰岛细胞分泌胰岛素的研究. 南方医科大学学报, 2009, 29(8): 1565-1567, 1570.
pmid: 19726293
[14]   Fang Y P, Ji A M, Yang Y L, et al. Plasma membrane-related Ca2+-ATPase-1 gene silencing promotes insulin secretion in islet β cells NIT. Journal of Southern Medical University, 2009, 29(8): 1565-1567, 1570.
pmid: 19726293
[15]   白鑫, 丁祥, 李慧, 等. alg3、vps1301、rad51基因缺失对粟酒裂殖酵母接合生殖的影响. 河北大学学报(自然科学版), 2021, 41(6): 720-727.
[15]   Bai X, Ding X, Li H, et al. Effects of the deletions of alg3, vps1301 and rad51 genes on the growth and conjugal reproduction of Schizosaccharomyces pombe. Journal of Hebei University (Natural Science Edition), 2021, 41(6): 720-727.
[16]   田宏.Wnt5a启动子甲基化可促进亚牛磺酸合成缺陷胶质瘤细胞侵袭. 沈阳: 中国医科大学, 2018.
[16]   Tian H.Hypomethylation of Wnt5a promoterincreased invasion ability of hypotaurine synthesis deficient glioma cells. Shenyang: China Medical University, 2018.
[17]   王芳平, 王志坚, 李永香. 三种模式微生物基因组中GC含量的比较. 基因组学与应用生物学, 2019, 38(5): 2215-2220.
[17]   Wang F P, Wang Z J, Li Y X. Comparison of GC contents in genomes of the three model microbes. Genomics and Applied Biology, 2019, 38(5): 2215-2220.
[18]   Hayles J, Wood V, Jeffery L, et al. A genome-wide resource of cell cycle and cell shape genes of fission yeast. Open Biology, 2013, 3(5): 130053.
doi: 10.1098/rsob.130053
[19]   Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 2000, 28(1): 27-30.
doi: 10.1093/nar/28.1.27 pmid: 10592173
[20]   van den Brink D M, Brites P, Haasjes J, et al. Identification of PEX7 as the second gene involved in refsum disease. The American Journal of Human Genetics, 2003, 72(2): 471-477.
doi: 10.1086/346093
[21]   Jang Y J, Park S K, Yoo H S. Isolation of an HSP12-homologous gene of Schizosaccharomyces pombe suppressing a temperature-sensitive mutant allele of cdc4. Gene, 1996, 172(1): 125-129.
pmid: 8654972
[22]   Duncan C D S, Rodríguez-López M, Ruis P, et al. General amino acid control in fission yeast is regulated by a nonconserved transcription factor, with functions analogous to Gcn4/Atf4. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): E 1829-E1838.
[23]   Kim J Y, Kim E J, Lopez-Maury L, et al. A metabolic strategy to enhance long-term survival by Phx 1 through stationary phase-specific pyruvate decarboxylases in fission yeast. Aging, 2014, 6(7): 587-601.
doi: 10.18632/aging.100682
[24]   Colinet A S, Sengottaiyan P, Deschamps A, et al. Yeast Gdt1 is a Golgi-localized calcium transporter required for stress-induced calcium signaling and protein glycosylation. Scientific Reports, 2016, 6: 24282.
doi: 10.1038/srep24282
[25]   Kjaerulff S, Davey J, Nielsen O. Analysis of the structural genes encoding M-factor in the fission yeast Schizosaccharomyces pombe: identification of a third gene, mfm3. Molecular and Cellular Biology, 1994, 14(6): 3895-3905.
doi: 10.1128/mcb.14.6.3895-3905.1994 pmid: 8196631
[26]   Graml V, Studera X, Lawson J L D, et al. A genomic multiprocess survey of machineries that control and link cell shape, microtubule organization, and cell-cycle progression. Developmental Cell, 2014, 31(2): 227-239.
doi: 10.1016/j.devcel.2014.09.005 pmid: 25373780
[27]   Scotchman E, Kume K, Navarro F J, et al. Identification of mutants with increased variation in cell size at onset of mitosis in fission yeast. Journal of Cell Science, 2021, 134(3): jcs251769.
doi: 10.1242/jcs.251769
[28]   Forsburg S L, Hodson J A. Mitotic replication initiation proteins are not required for pre-meiotic S phase. Nature Genetics, 2000, 25(3): 263-268.
doi: 10.1038/77015 pmid: 10888871
[29]   Szankasi P, Smith G R. A role for exonuclease I from S. pombe in mutation avoidance and mismatch correction. Science, 1995, 267(5201): 1166-1169.
doi: 10.1126/science.7855597 pmid: 7855597
[30]   Tran P T, Erdeniz N, Symington L S, et al. EXO1-A multi-tasking eukaryotic nuclease. DNA Repair, 2004, 3(12): 1549-1559.
pmid: 15474417
[31]   Egel R, Beach D H, Klar A J. Genes required for initiation and resolution steps of mating-type switching in fission yeast. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(11): 3481-3485.
[32]   Mansour A A, Tornier C, Lehmann E, et al. Control of GT repeat stability in Schizosaccharomyces pombe by mismatch repair factors. Genetics, 2001, 158(1): 77-85.
doi: 10.1093/genetics/158.1.77 pmid: 11333219
[33]   Lee Y, Min K, Son H, et al. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum. Molecular Plant-Microbe Interactions, 2014, 27(12): 1344-1355.
doi: 10.1094/MPMI-05-14-0145-R
[34]   Xie M H, Ma N, Bai N, et al. Phospholipase C (AoPLC2) regulates mycelial development, trap morphogenesis, and pathogenicity of the nematode-trapping fungus Arthrobotrys oligospora. Journal of Applied Microbiology, 2022, 132(3): 2144-2156.
doi: 10.1111/jam.15370
[35]   Qin Y L, Zhang S B, Lv Y Y, et al. Transcriptomics analyses and biochemical characterization of Aspergillus flavus spores exposed to 1-nonanol. Applied Microbiology and Biotechnology, 2022, 106(5-6): 2091-2106.
doi: 10.1007/s00253-022-11830-4
[36]   Laplante M, Sabatini D M. mTOR signaling in growth control and disease. Cell, 2012, 149(2): 274-293.
doi: 10.1016/j.cell.2012.03.017 pmid: 22500797
[37]   Willet A H, DeWitt A K, Beckley J R, et al. NDR kinase Sid2 drives anillin-like Mid1 from the membrane to promote cytokinesis and medial division site placement. Current Biology, 2019, 29(6): 1055-1063, e2.
doi: S0960-9822(19)30134-4 pmid: 30853434
[38]   Schmoller K M, Turner J J, Kõivomägi M, et al. Dilution of the cell cycle inhibitor Whi 5 controls budding-yeast cell size. Nature, 2015, 526(7572): 268-272.
doi: 10.1038/nature14908
[39]   Li Y J, Christensen J R, Homa K E, et al. The F-actin bundler α-actinin Ain 1 is tailored for ring assembly and constriction during cytokinesis in fission yeast. Molecular Biology of the Cell, 2016, 27(11): 1821-1833.
doi: 10.1091/mbc.e16-01-0010
[40]   Kovar D R, Wu J Q, Pollard T D. Profilin-mediated competition between capping protein and formin Cdc12p during cytokinesis in fission yeast. Molecular Biology of the Cell, 2005, 16(5): 2313-2324.
pmid: 15743909
[41]   Chatfield-Reed K, Vachon L, Kwon E J G, et al. Conserved and diverged functions of the calcineurin-activated Prz 1 transcription factor in fission yeast. Genetics, 2016, 202(4): 1365-1375.
doi: 10.1534/genetics.115.184218 pmid: 26896331
[42]   You D, Wang M M, Ye B C. Acetyl-CoA synthetases of Saccharopolyspora erythraea are regulated by the nitrogen response regulator GlnR at both transcriptional and post-translational levels. Molecular Microbiology, 2017, 103(5): 845-859.
doi: 10.1111/mmi.13595 pmid: 27987242
[43]   Gresh L, Bourachot B, Reimann A, et al. The SWI/SNF chromatin-remodeling complex subunit SNF 5 is essential for hepatocyte differentiation. The EMBO Journal, 2005, 24(18): 3313-3324.
doi: 10.1038/sj.emboj.7600802
[44]   Martinez-Moya P, Campusano S, Córdova P, et al. Convergence between regulation of carbon utilization and catabolic repression in Xanthophyllomyces dendrorhous. mSphere, 2020, 5(2): e00065-e00020.
[45]   Lim P J, Marfurt S, Lindert U, et al. Omics profiling of S2P mutant fibroblasts as a mean to unravel the pathomechanism and molecular signatures of X-linked MBTPS 2 osteogenesis imperfecta. Frontiers in Genetics, 2021, 12: 662751.
doi: 10.3389/fgene.2021.662751
[46]   Alexandre-Moreno S, Bonet-Fernández J M, Atienzar-Aroca R, et al. Null cyp1b 1 activity in zebrafish leads to variable craniofacial defects associated with altered expression of extracellular matrix and lipid metabolism genes. International Journal of Molecular Sciences, 2021, 22(12): 6430.
doi: 10.3390/ijms22126430
[47]   Cooper C, Peterson E J R, Bailo R, et al. MadR mediates acyl CoA-dependent regulation of mycolic acid desaturation in mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(8): e2111059119.
[1] BAI Song,HOU Zheng-jie,GAO Geng-rong,QIAO Bin,CHENG Jing-sheng. Advances in the Synthesis of Odd-chain Fatty Acids by Microorganisms[J]. China Biotechnology, 2022, 42(6): 76-85.
[2] FU Yun-fei,WEI Qi-lin,YUAN Ming-gui,KANG Hua-hua,TIAN Ya,XIANG Rong,XU Zhi-hong. Research Progress of Clostridium butyricum and Metabolic Modification of Butyric Acid Production[J]. China Biotechnology, 2022, 42(1/2): 37-45.
[3] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[4] ZHANG Zhong-su, YANG Rui-gang, ZHU Ling-yun, WU Xiao-min. Strategies for Improving The Yield of Microbial Terpenoids Production[J]. China Biotechnology, 2017, 37(1): 97-103.
[5] LUO Jia, SHEN Lin yuan, LI Qiang, LI Xue wei, ZHANG Shun hua, ZHU Li. Research Progress of RNA Editing in Mammal Acting on Non-coding RNA[J]. China Biotechnology, 2016, 36(11): 76-82.
[6] GENG Men-tin, YAO Yuan, HU Xin-wen, GUO Jian-chun, MIN Yi. Isolation of Cassava ftsZ Plastid Division Family Genes and Preliminary Identification Their Functions in E. coli[J]. China Biotechnology, 2013, 33(6): 24-29.
[7] SHANG Shu-mei, CHAGAN Irbis, SHEN Dong-ling, LI Kun-zhi. Study on Metabolic Pathway of Efficiently Producting Ethanol by Thermophilic bacterium Using Mannitol[J]. China Biotechnology, 2013, 33(10): 73-80.
[8] QIAN Long, TANG Li-wei, HUANG Shu-shi, Chagan Irbis. Research Progress of Bioethanol from Alginate Fermentation[J]. China Biotechnology, 2013, 33(1): 122-127.