Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (6): 66-75    DOI: 10.13523/j.cb.2201016
    
Root Cause and Prevention of Monoclonal Antibody Disulfide Bonds Reduction During Biopharmaceutical Manufacturing Process
ZHANG Xin-di1,FAN Chang-wei2,SONG Xiao-qing2,*(),XU Cui-yun2,HUANG Feng-jie1
1. College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
2. Shanghai Henlius Biotech, Inc., Shanghai 200233, China
Download: HTML   PDF(1593KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Monoclonal antibody disulfide bonds reduction has been a common issue in biopharmaceutical process, which could produce low-molecular weight fragments, affect product quality, and lead to decreased protein purity and stability. Moreover, it could also affect the safety and effectiveness of drugs. Antibody disulfide bonds reduction is a reversible redox reaction caused by intracellular thioredoxin system and glutathione system, and is related to the specific production process. In recent years, with the development of antibody drugs and mammalian cell culture scale, disulfide bonds reduction is observed more frequently. To solve this problem, scientists have been constantly developing mitigation strategies to ensure the product quality. In this paper, the antibody disulfide bonds structure, cause of disulfide bonds reduction and influencing factors in manufacturing process were summarized. It is focused on the prevention methods in the manufacturing process. Additionally, several feasible process analysis techniques are listed so as to provide reference for the further development of monoclonal antibody drugs in manufacturing.



Key wordsAntibody      Disulfide bond      Oxidation and reduction      Process development      Process analytical technology     
Received: 14 January 2022      Published: 07 July 2022
ZTFLH:  Q819  
Corresponding Authors: Xiao-qing SONG     E-mail: hfj@cpu.edu.cn
Cite this article:

ZHANG Xin-di,FAN Chang-wei,SONG Xiao-qing,XU Cui-yun,HUANG Feng-jie. Root Cause and Prevention of Monoclonal Antibody Disulfide Bonds Reduction During Biopharmaceutical Manufacturing Process. China Biotechnology, 2022, 42(6): 66-75.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2201016     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I6/66

Fig.1 Disulfide bond structure and reduced form of antibody(a) Intrachain and interchain disulfide bonds in intact IgG (b) Five forms of reduced antibody VH: heavy chain variable region; CH1, CH2, CH3: heavy chain constant region; VL: light chain variable region; CL: light chain constant region
Fig.2 Mechanism of thioredoxin system and glutathione system reducing disulfide bond of antibody
方法 原理 操作步骤 参考文献
敲除TXN1基因 抑制酶表达 细胞株开发阶段 [43]
添加酶抑制剂(ATG、ATM、Cu2+、EDTA、L型胱氨酸等) 抑制酶活性 培养&收获阶段 [18,33,37,44-45]
降低pH 降低酶反应速率 培养&收获阶段 [37,40]
低温储存 降低酶反应速率 收获阶段 [6]
提高DO设定点 使可逆的氧化还原
反应转为氧化方向
培养阶段 [47]
向储存容器通入空气、添加H2O2 使可逆的氧化还原
反应转为氧化方向
收获阶段 [28,38]
使用密封式离心机、控制深层过滤压差 减少酶的数量 收获阶段 [38,50]
缩短储存时间 缩短酶反应时间 收获阶段 [6]
Protein A亲和层析用氧化还原缓冲液洗涤 将已经还原的抗体重新氧化 纯化阶段 [52-53]
Table 1 Different approaches to prevent disulfide bond reduction and rescue reduced antibody during manufacturing process
[1]   Kaplon H, Reichert J M. Antibodies to watch in 2021. MAbs, 2021, 13(1): 1860476.
doi: 10.1080/19420862.2020.1860476
[2]   Goydel R S, Rader C. Antibody-based cancer therapy. Oncogene, 2021, 40(21): 3655-3664.
doi: 10.1038/s41388-021-01811-8
[3]   Mullard A. FDA approves 100th monoclonal antibody product. Nature Reviews Drug Discovery, 2021, 20(7): 491-495.
doi: 10.1038/d41573-021-00079-7 pmid: 33953368
[4]   Carrara S C, Ulitzka M, Grzeschik J, et al. From cell line development to the formulated drug product: the art of manufacturing therapeutic monoclonal antibodies. International Journal of Pharmaceutics, 2021, 594: 120164.
doi: 10.1016/j.ijpharm.2020.120164
[5]   Lakbub J C, Shipman J T, Desaire H. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins. Analytical and Bioanalytical Chemistry, 2018, 410(10): 2467-2484.
doi: 10.1007/s00216-017-0772-1 pmid: 29256076
[6]   Ren T W, Tan Z J, Ehamparanathan V, et al. Antibody disulfide bond reduction and recovery during biopharmaceutical process development- a review. Biotechnology and Bioengineering, 2021, 118(8): 2829-2844.
doi: 10.1002/bit.27790
[7]   Wang W, Singh S, Zeng D L, et al. Antibody structure, instability, and formulation. Journal of Pharmaceutical Sciences, 2007, 96(1): 1-26.
pmid: 16998873
[8]   Liu H C, May K. Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. MAbs, 2012, 4(1): 17-23.
doi: 10.4161/mabs.4.1.18347
[9]   Wang X L, Kumar S, Singh S K. Disulfide scrambling in IgG2 monoclonal antibodies: insights from molecular dynamics simulations. Pharmaceutical Research, 2011, 28(12): 3128-3144.
doi: 10.1007/s11095-011-0503-9
[10]   Moritz B, Stracke J O. Assessment of disulfide and hinge modifications in monoclonal antibodies. Electrophoresis, 2017, 38(6): 769-785.
doi: 10.1002/elps.201600425 pmid: 27982442
[11]   Hutterer K M, Hong R W, Lull J, et al. Monoclonal antibody disulfide reduction during manufacturing: Untangling process effects from product effects. MAbs, 2013, 5(4): 608-613.
doi: 10.4161/mabs.24725
[12]   Wang T, Liu Y D, Cai B, et al. Investigation of antibody disulfide reduction and re-oxidation and impact to biological activities. Journal of Pharmaceutical and Biomedical Analysis, 2015, 102: 519-528.
doi: 10.1016/j.jpba.2014.10.023
[13]   Dionne B, Mishra N, Butler M. A low redox potential affects monoclonal antibody assembly and glycosylation in cell culture. Journal of Biotechnology, 2017, 246: 71-80.
doi: 10.1016/j.jbiotec.2017.01.016
[14]   Manteca A, Alonso-Caballero Á, Fertin M, et al. The influence of disulfide bonds on the mechanical stability of proteins is context dependent. Journal of Biological Chemistry, 2017, 292(32): 13374-13380.
doi: 10.1074/jbc.M117.784934 pmid: 28642368
[15]   Sakurai K, Nakahata R, Lee Y H, et al. Effects of a reduced disulfide bond on aggregation properties of the human IgG1 CH3 domain. Biochimica et Biophysica Acta, 2015, 1854(10): 1526-1535.
[16]   Derfus G E, Dizon-Maspat J, Broddrick J T, et al. Red colored IgG 4 caused by vitamin B12 from cell culture media combined with disulfide reduction at harvest. MAbs, 2014, 6(3): 679-688.
doi: 10.4161/mabs.28257 pmid: 24552690
[17]   Du C, Martin R, Huang Y P, et al. Vitamin B12 association with mAbs: mechanism and potential mitigation strategies. Biotechnology and Bioengineering, 2018, 115(4): 900-909.
doi: 10.1002/bit.26511
[18]   Chung W K, Russell B, Yang Y H, et al. Effects of antibody disulfide bond reduction on purification process performance and final drug substance stability. Biotechnology and Bioengineering, 2017, 114(6): 1264-1274.
doi: 10.1002/bit.26265 pmid: 28186329
[19]   Gurjar S A, Wheeler J X, Wadhwa M, et al. The impact of thioredoxin reduction of allosteric disulfide bonds on the therapeutic potential of monoclonal antibodies. Journal of Biological Chemistry, 2019, 294(51): 19616-19634.
doi: 10.1074/jbc.RA119.010637
[20]   Li F, Vijayasankaran N, Shen A, et al. Cell culture processes for monoclonal antibody production. MAbs, 2010, 2(5): 466-479.
doi: 10.4161/mabs.2.5.12720
[21]   Cherkaoui S, Bettinger T, Hauwel M, et al. Tracking of antibody reduction fragments by capillary gel electrophoresis during the coupling to microparticles surface. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53(2): 172-178.
doi: 10.1016/j.jpba.2010.01.039 pmid: 20193997
[22]   Dada O O, Rao R, Jones N, et al. Comparison of SEC and CE-SDS methods for monitoring hinge fragmentation in IgG1 monoclonal antibodies. Journal of Pharmaceutical and Biomedical Analysis, 2017, 145: 91-97.
doi: 10.1016/j.jpba.2017.06.006
[23]   Guan X Y, Zhang L, Wypych J. Direct mass spectrometric characterization of disulfide linkages. MAbs, 2018, 10(4): 572-582.
doi: 10.1080/19420862.2018.1442998
[24]   Deslignière E, Botzanowski T, Diemer H, et al. High-resolution IMS-MS to assign additional disulfide bridge pairing in complementarity-determining regions of an IgG 4 monoclonal antibody. Journal of the American Society for Mass Spectrometry, 2021, 32(10): 2505-2512.
doi: 10.1021/jasms.1c00151 pmid: 34437803
[25]   Liu H C, Gaza-Bulseco G, Chumsae C. Analysis of reduced monoclonal antibodies using size exclusion chromatography coupled with mass spectrometry. Journal of the American Society for Mass Spectrometry, 2009, 20(12): 2258-2264.
doi: 10.1016/j.jasms.2009.08.015
[26]   Mullan B, Dravis B, Lim A, et al. Disulphide bond reduction of a therapeutic monoclonal antibody during cell culture manufacturing operations. BMC Proceedings, 2011, 5(Suppl 8): P110.
[27]   Trivedi M V, Laurence J S, Siahaan T J. The role of thiols and disulfides on protein stability. Current Protein & Peptide Science, 2009, 10(6): 614-625.
[28]   Du C, Huang Y P, Borwankar A, et al. Using hydrogen peroxide to prevent antibody disulfide bond reduction during manufacturing process. MAbs, 2018, 10(3): 500-510.
doi: 10.1080/19420862.2018.1424609
[29]   Park S Y, Egan S, Cura A J, et al. Untargeted proteomics reveals upregulation of stress response pathways during CHO-based monoclonal antibody manufacturing process leading to disulfide bond reduction. MAbs, 2021, 13(1): 1963094.
doi: 10.1080/19420862.2021.1963094
[30]   Xie W L, Ma W J, Liu P, et al. Overview of thioredoxin system and targeted therapies for acute leukemia. Mitochondrion, 2019, 47: 38-46.
doi: 10.1016/j.mito.2019.04.010
[31]   Lillig C H, Berndt C, Holmgren A. Glutaredoxin systems. Biochimica et Biophysica Acta (BBA) - General Subjects, 2008, 1780(11): 1304-1317.
doi: 10.1016/j.bbagen.2008.06.003
[32]   Handlogten M W, Zhu M, Ahuja S. Glutathione and thioredoxin systems contribute to recombinant monoclonal antibody interchain disulfide bond reduction during bioprocessing. Biotechnology and Bioengineering, 2017, 114(7): 1469-1477.
doi: 10.1002/bit.26278 pmid: 28262915
[33]   Kao Y H, Hewitt D P, Trexler-Schmidt M, et al. Mechanism of antibody reduction in cell culture production processes. Biotechnology and Bioengineering, 2010, 107(4): 622-632.
doi: 10.1002/bit.22848
[34]   Cura A J, Xu X K, Egan S, et al. Metabolic understanding of disulfide reduction during monoclonal antibody production. Applied Microbiology and Biotechnology, 2020, 104(22): 9655-9669.
doi: 10.1007/s00253-020-10916-1
[35]   Chakrabarti S, Barrow C J, Kanwar R K, et al. Studies to prevent degradation of recombinant fc-fusion protein expressed in mammalian cell line and protein characterization. International Journal of Molecular Sciences, 2016, 17(6): 913.
doi: 10.3390/ijms17060913
[36]   Li F, Hashimura Y, Pendleton R, et al. A systematic approach for scale-down model development and characterization of commercial cell culture processes. Biotechnology Progress, 2006, 22(3): 696-703.
doi: 10.1021/bp0504041
[37]   Trexler-Schmidt M, Sargis S, Chiu J, et al. Identification and prevention of antibody disulfide bond reduction during cell culture manufacturing. Biotechnology and Bioengineering, 2010, 106(3): 452-461.
doi: 10.1002/bit.22699 pmid: 20178122
[38]   O’Mara B, Gao Z H, Kuruganti M, et al. Impact of depth filtration on disulfide bond reduction during downstream processing of monoclonal antibodies from CHO cell cultures. Biotechnology and Bioengineering, 2019, 116(7): 1669-1683.
doi: 10.1002/bit.26964
[39]   Handlogten M W, Zhu M, Ahuja S. Intracellular response of CHO cells to oxidative stress and its influence on metabolism and antibody production. Biochemical Engineering Journal, 2018, 133: 12-20.
doi: 10.1016/j.bej.2018.01.031
[40]   Xie P P, Niu H J, Chen X N, et al. Elucidating the effects of pH shift on IgG 1 monoclonal antibody acidic charge variant levels in Chinese hamster ovary cell cultures. Applied Microbiology and Biotechnology, 2016, 100(24): 10343-10353.
doi: 10.1007/s00253-016-7749-4
[41]   Le Basle Y, Chennell P, Tokhadze N, et al. Physicochemical stability of monoclonal antibodies: a review. Journal of Pharmaceutical Sciences, 2020, 109(1): 169-190.
doi: 10.1016/j.xphs.2019.08.009
[42]   Liu H C, Nowak C, Shao M, et al. Impact of cell culture on recombinant monoclonal antibody product heterogeneity. Biotechnology Progress, 2016, 32(5): 1103-1112.
doi: 10.1002/btpr.2327
[43]   Koterba K L, Borgschulte T, Laird M W. Thioredoxin 1 is responsible for antibody disulfide reduction in CHO cell culture. Journal of Biotechnology, 2012, 157(1): 261-267.
doi: 10.1016/j.jbiotec.2011.11.009
[44]   Brühlmann D, Jordan M, Hemberger J, et al. Tailoring recombinant protein quality by rational media design. Biotechnology Progress, 2015, 31(3): 615-629.
doi: 10.1002/btpr.2089 pmid: 25864704
[45]   Chaderjian W B, Chin E T, Harris R J, et al. Effect of copper sulfate on performance of a serum-free CHO cell culture process and the level of free thiol in the recombinant antibody expressed. Biotechnology Progress, 2005, 21(2): 550-553.
pmid: 15801797
[46]   Franey H, Brych S R, Kolvenbach C G, et al. Increased aggregation propensity of IgG 2 subclass over IgG1: role of conformational changes and covalent character in isolated aggregates. Protein Science, 2010, 19(9): 1601-1615.
doi: 10.1002/pro.434
[47]   Handlogten M W, Wang J H, Ahuja S. Online control of cell culture redox potential prevents antibody interchain disulfide bond reduction. Biotechnology and Bioengineering, 2020, 117(5): 1329-1336.
doi: 10.1002/bit.27281 pmid: 31956991
[48]   Ishikawa T, Ito T, Endo R, et al. Influence of pH on heat-induced aggregation and degradation of therapeutic monoclonal antibodies. Biological & Pharmaceutical Bulletin, 2010, 33(8): 1413-1417.
[49]   Zhang W J, Liu X P, Tang H P, et al. Investigation into the impact of tyrosine on the product formation and quality attributes of mAbs in rCHO cell cultures. Applied Microbiology and Biotechnology, 2020, 104(16): 6953-6966.
doi: 10.1007/s00253-020-10744-3
[50]   Hutchinson N, Bingham N, Murrell N, et al. Shear stress analysis of mammalian cell suspensions for prediction of industrial centrifugation and its verification. Biotechnology and Bioengineering, 2006, 95(3): 483-491.
pmid: 16767778
[51]   Mamathambika B S, Bardwell J C. Disulfide-linked protein folding pathways. Annual Review of Cell and Developmental Biology, 2008, 24: 211-235.
doi: 10.1146/annurev.cellbio.24.110707.175333 pmid: 18588487
[52]   Tang P F, Tan Z J, Ehamparanathan V, et al. Optimization and kinetic modeling of interchain disulfide bond reoxidation of monoclonal antibodies in bioprocesses. MAbs, 2020, 12(1): 1829336.
doi: 10.1080/19420862.2020.1829336
[53]   Tan Z J, Ehamparanathan V, Ren T W, et al. On-column disulfide bond formation of monoclonal antibodies during protein A chromatography eliminates low molecular weight species and rescues reduced antibodies. MAbs, 2020, 12(1): 1829333.
doi: 10.1080/19420862.2020.1829333
[54]   Wasalathanthri D P, Shah R, Ding J L, et al. Process analytics 4.0: a paradigm shift in rapid analytics for biologics development. Biotechnology Progress, 2021, 37(4): e3177.
doi: 10.1002/btpr.3177 pmid: 34036755
[55]   Wasalathanthri D P, Rehmann M S, Song Y L, et al. Technology outlook for real-time quality attribute and process parameter monitoring in biopharmaceutical development-a review. Biotechnology and Bioengineering, 2020, 117(10): 3182-3198.
doi: 10.1002/bit.27461 pmid: 32946122
[56]   Chemmalil L, Prabhakar T, Kuang J E, et al. Online/at-line measurement, analysis and control of product titer and critical product quality attributes (CQAs) during process development. Biotechnology and Bioengineering, 2020, 117(12): 3757-3765.
doi: 10.1002/bit.27531
[57]   Sinharoy P, McFarland K S, Majewska N I, et al. Redox as a bioprocess parameter: analytical redox quantification in biological therapeutic production. Current Opinion in Biotechnology, 2021, 71: 49-54.
doi: 10.1016/j.copbio.2021.06.017 pmid: 34243034
[58]   Meneses-Acosta A, Gómez A, Ramírez O T. Control of redox potential in hybridoma cultures: effects on MAb production, metabolism, and apoptosis. Journal of Industrial Microbiology and Biotechnology, 2012, 39(8): 1189-1198.
doi: 10.1007/s10295-012-1125-x pmid: 22526329
[59]   Switzar L, Nicolardi S, Rutten J W, et al. In-depth characterization of protein disulfide bonds by online liquid chromatography-electrochemistry-mass spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27(1): 50-58.
doi: 10.1007/s13361-015-1258-z pmid: 26369777
[60]   Wu S L, Jiang H T, Lu Q Z, et al. Mass spectrometric determination of disulfide linkages in recombinant therapeutic proteins using online LC-MS with electron-transfer dissociation. Analytical Chemistry, 2009, 81(1): 112-122.
doi: 10.1021/ac801560k
[61]   Abu-Absi N R, Kenty B M, Cuellar M E, et al. Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnology and Bioengineering, 2011, 108(5): 1215-1221.
doi: 10.1002/bit.23023
[62]   Matthews T E, Berry B N, Smelko J, et al. Closed loop control of lactate concentration in mammalian cell culture by Raman spectroscopy leads to improved cell density, viability, and biopharmaceutical protein production. Biotechnology and Bioengineering, 2016, 113(11): 2416-2424.
doi: 10.1002/bit.26018 pmid: 27215441
[63]   Liu Z M, Zhang Z J, Qin Y J, et al. The application of Raman spectroscopy for monitoring product quality attributes in perfusion cell culture. Biochemical Engineering Journal, 2021, 173: 108064.
doi: 10.1016/j.bej.2021.108064
[1] Kun WANG,Fu-yun ZHAO,Yun-fei XU,Xiao-feng YUAN,Wei-chun ZHAO. Preparation of Monoclonal Antibody Against Fusarium solani and Development of Its Colloidal Gold Immunochromatographic Strip[J]. China Biotechnology, 2022, 42(7): 54-61.
[2] ZENG Hong-ye,NING Wen-jing,LUO Wen-xin. Advances in the Study of Antibody Composition and Targets of ADC Drugs[J]. China Biotechnology, 2022, 42(5): 69-80.
[3] CHEN Yang, LIU Tong, ZHANG Jia-qi, LIAO Hua-xin, LIN Yue-zhi, WANG Xiao-jun, WANG Ya-yu. Screening of Monoclonal Antibodies Targeting the Equine IgG1 Based on Single B Cell Antibodies Gene Amplification Technology[J]. China Biotechnology, 2022, 42(4): 17-23.
[4] LI Kai-tong, LIU Jin-qing, CAI Wang-wei, XIAO Man, SHEN Bei-fen, WANG Jing, FENG Jian-nan. Advances of Therapeutic Monoclonal Antibodies Targeting Human Interleukin-6 Protein[J]. China Biotechnology, 2022, 42(4): 58-67.
[5] CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen. Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles[J]. China Biotechnology, 2021, 41(7): 42-49.
[6] CHEN Wen-jie,MIAO Xian-feng. Domestic Research and Development Status of Antibody-drug Conjugates and Strategic Layout of Key Enterprises[J]. China Biotechnology, 2021, 41(6): 105-110.
[7] XU Ye-chun,LIU Hong,LI Jian-feng,SHEN Jing-shan,JIANG Hua-liang. Recent Progress in Drug Development against COVID-19[J]. China Biotechnology, 2021, 41(6): 111-118.
[8] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[9] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[10] ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast[J]. China Biotechnology, 2020, 40(8): 74-83.
[11] YANG Xiao-ying,LI Meng,ZHAO Wei,TANG Min,ZHANG Zhi-qian. Preparation and Preliminary Characterization of Anti-α2δ1/CD3 Bispecific Antibody[J]. China Biotechnology, 2020, 40(7): 9-14.
[12] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.
[13] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[14] YANG Li,SHI Xiao-yu,LI Wen-lei,LI Jian,XU Han-mei. Optimization of Electroporation Conditions in Construction of Phage Display Antibody Library[J]. China Biotechnology, 2020, 40(4): 42-48.
[15] LI Tong-tong,SONG Cai-ling,YANG Kai-yue,WANG Wen-jing,CHEN Hui-yu,LIU Ming. Preparation and Neutralization Activity of Anti-Canine Parvovirus VP2 Protein Single-chain Antibody[J]. China Biotechnology, 2020, 40(4): 10-16.