Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (6): 111-118    DOI: 10.13523/j.cb.2105053
    
Recent Progress in Drug Development against COVID-19
XU Ye-chun,LIU Hong,LI Jian-feng,SHEN Jing-shan,JIANG Hua-liang()
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
Download: HTML   PDF(537KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses tremendous threats to public health and urgently needs an effective cure. The progress in drug repurposing, therapeutic antibody and small molecule development, and traditional Chinese medicine for the treatment of COVID-19 in the early state of the outbreak were focused. A number of drugs have been revealed to inhibit the replication of SARS-CoV-2 by drug repurposing, which includes remdesivir, favipiravir, chloroquine, and hydroxychloroquine. Remedsivir is the first drug approved by the FDA for the treatment of COVID-19 in USA. As for the development of innovative drug, a major effort has been directed to the discovery of therapeutic antibodies targeting spike protein and inhibitors of 3C-like protease as well as RNA-dependent RNA polymerase of SARS-CoV-2. In addition, traditional Chinese medicine has played an important role in the prevention and treatment of COVID-19. Jinhua Qinggan granule, Lianhua Qingwen capsule, Xuebijing injection, Shuanghuanglian oral liquid, Qingfei Baidu decoction, Huashi Baidu prescription, and Xuanfei Baidu prescription have entered clinical trials for the treatment of COVID-19.



Key wordsCOVID-19      Drug repurposing      Small-molecule drug      Antibody      Traditional      Chinese medicine     
Received: 06 May 2021      Published: 06 July 2021
ZTFLH:  Q819  
Corresponding Authors: Hua-liang JIANG     E-mail: hljiang@simm.ac.cn
Cite this article:

XU Ye-chun,LIU Hong,LI Jian-feng,SHEN Jing-shan,JIANG Hua-liang. Recent Progress in Drug Development against COVID-19. China Biotechnology, 2021, 41(6): 111-118.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2105053     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I6/111

[1]   中华人民共和国国务院新闻办公室. 抗击新冠肺炎疫情的中国行动. 北京: 人民出版社, 2020.
[1]   The State Council Information Office of the People’s Republice of China. Fighting COVID-19 China in action. Beijing: People’s Publishing House, 2020.
[2]   Saha R P, Sharma A R, Singh M K, et al. Repurposing drugs, ongoing vaccine, and new therapeutic development initiatives against COVID-19. Frontiers in Pharmacology, 2020, 11:1258.
doi: 10.3389/fphar.2020.01258
[3]   Yu F, Xiang R, Deng X Q, et al. Receptor-binding domain-specific human neutralizing monoclonal antibodies against SARS-CoV and SARS-CoV-2. Signal Transduction and Targeted Therapy, 2020, 5(1):212.
doi: 10.1038/s41392-020-00318-0
[4]   Wang M L, Cao R Y, Zhang L K, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 2020, 30:269-271.
doi: 10.1038/s41422-020-0282-0
[5]   Malin J J, Suárez I, Priesner V, et al. Remdesivir against COVID-19 and other viral diseases. Clinical Microbiology Reviews, 2020, 34(1):e00162-20.
[6]   Wang Y M, Zhang D Y, Du G H, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236):1569-1578.
doi: 10.1016/S0140-6736(20)31022-9
[7]   Spinner C D, Gottlieb R L, Criner G J, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA, 2020, 324(11):1048-1057.
doi: 10.1001/jama.2020.16349
[8]   Beigel J H, Tomashek K M, Dodd L E, et al. Remdesivir for the treatment of COVID-19-final report. New England Journal of Medicine, 2020, 383(19):1813-1826.
doi: 10.1056/NEJMoa2007764
[9]   Keyaerts E, Vijgen L, Maes P, et al. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochemical and Biophysical Research Communications, 2004, 323(1):264-268.
doi: 10.1016/j.bbrc.2004.08.085
[10]   Chang R, Sun W Z. Repositioning chloroquine as antiviral prophylaxis against COVID-19: potential and challenges. Drug Discovery Today, 2020, 25(10):1786-1792.
doi: 10.1016/j.drudis.2020.06.030
[11]   Gautret P, Lagier J C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 2020, 56(1):105949.
doi: 10.1016/j.ijantimicag.2020.105949
[12]   Huang M X, Li M, Xiao F, et al. Preliminary evidence from a multicenter prospective observational study of the safety and efficacy of chloroquine for the treatment of COVID-19. National Science Review, 2020, 7(9):1428-1436.
doi: 10.1093/nsr/nwaa113
[13]   Yu B, Li C Z, Chen P, et al. Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Science China Life Sciences, 2020, 63(10):1515-1521.
doi: 10.1007/s11427-020-1732-2
[14]   Yu B, Li C Z, Chen P, et al. Beneficial effects exerted by hydroxychloroquine in treating COVID-19 patients via protecting multiple organs. Science China Life Sciences, 2021, 64(2):330-333.
doi: 10.1007/s11427-020-1782-1
[15]   Hoffmann M, Mösbauer K, Hofmann-Winkler H, et al. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature, 2020, 585(7826):588-590.
doi: 10.1038/s41586-020-2575-3 pmid: 32698190
[16]   Maisonnasse P, Guedj J, Contreras V, et al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature, 2020, 585(7826):584-587.
doi: 10.1038/s41586-020-2558-4 pmid: 32698191
[17]   Cavalcanti A B, Zampieri F G, Rosa R G, et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate COVID-19. The New England Journal of Medicine, 2020, 383(21):2041-2052.
doi: 10.1056/NEJMoa2019014
[18]   Jin Z M, Du X Y, Xu Y C, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811):289-293.
doi: 10.1038/s41586-020-2223-y
[19]   Xiong R, Zhang L K, Li S L, et al. Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2. Protein & Cell, 2020, 11(10):723-739.
[20]   Xu Y C, Jiang H L. Potential treatment of COVID-19 by inhibitors of human dihydroorotate dehydrogenase. Protein & Cell, 2020, 11(10):699-702.
[21]   Hu K, Wang M M, Zhao Y, et al. A small-scale medication of leflunomide as a treatment of COVID-19 in an open-label blank-controlled clinical trial. Virologica Sinica, 2020, 35(6):725-733.
doi: 10.1007/s12250-020-00258-7
[22]   Dai W H, Zhang B, Jiang X M, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020, 368(6497):1331-1335.
doi: 10.1126/science.abb4489
[23]   Yin W C, Mao C Y, Luan X D, et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368(6498):1499-1504.
[24]   Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2): 271-280.e8.
doi: S0092-8674(20)30229-4 pmid: 32142651
[25]   Ju B, Zhang Q, Ge J W, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020, 584(7819):115-119.
doi: 10.1038/s41586-020-2380-z
[26]   Shi R, Shan C, Duan X M, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature, 2020, 584(7819):120-124.
doi: 10.1038/s41586-020-2381-y
[27]   Cao Y L, Su B, Guo X H, et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell, 2020, 182(1): 73-84.e16.
doi: 10.1016/j.cell.2020.05.025
[28]   Tang Y L, Wang Z H, Huo C Y, et al. Antiviral effects of Shuanghuanglian injection powder against influenza A virus H5N1 in vitro and in vivo. Microbial Pathogenesis, 2018, 121:318-324.
doi: 10.1016/j.micpath.2018.06.004
[29]   Su H X, Yao S, Zhao W F, et al. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacologica Sinica, 2020, 41(9):1167-1177.
doi: 10.1038/s41401-020-0483-6
[30]   Ni L, Zhou L, Zhou M, et al. Combination of western medicine and Chinese traditional patent medicine in treating a family case of COVID-19. Frontiers of Medicine, 2020, 14(2):210-214.
doi: 10.1007/s11684-020-0757-x
[31]   Ni L, Wen Z, Hu X W, et al. Effects of Shuanghuanglian oral liquids on patients with COVID-19: a randomized, open-label, parallel-controlled, multicenter clinical trial. Frontiers of Medicine, 2021, https://doi.org/10.1007/s11684-021-0853-6.
[32]   Ding Y W, Zeng L J, Li R F, et al. The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. BMC Complementary and Alternative Medicine, 2017, 17(1):130.
doi: 10.1186/s12906-017-1585-7
[33]   Li R F, Hou Y L, Huang J C, et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacological Research, 2020, 156:104761.
doi: 10.1016/j.phrs.2020.104761
[34]   Hu K, Guan W J, Bi Y, et al. Efficacy and safety of Lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: a multicenter, prospective, randomized controlled trial. Phytomedicine, 2021, 85:153242.
doi: 10.1016/j.phymed.2020.153242
[1] YUN Tao,GONG Yue,GU Peng,XU Bing-bing,LI Jin,ZHAO Xi-chen. Present Situation and Prospect of International S&T Cooperation between China and Countries Participating in the “Belt and Road” Initiative to Combat COVID-19[J]. China Biotechnology, 2021, 41(7): 110-121.
[2] CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen. Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles[J]. China Biotechnology, 2021, 41(7): 42-49.
[3] CHEN Wen-jie,MIAO Xian-feng. Domestic Research and Development Status of Antibody-drug Conjugates and Strategic Layout of Key Enterprises[J]. China Biotechnology, 2021, 41(6): 105-110.
[4] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[5] FU Gui-e,LI Jin,GENG Pei-ran,SHEN Meng-qiu,ZHANG Jin-qian-nan,ZHAO Xi-chen. A Study on COVID-19 Prevention Force of Typical Cities in the Guangdong-Hong Kong-Macao Greater Bay Area Based on the Medical Perspective[J]. China Biotechnology, 2021, 41(12): 125-140.
[6] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[7] ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast[J]. China Biotechnology, 2020, 40(8): 74-83.
[8] YANG Xiao-ying,LI Meng,ZHAO Wei,TANG Min,ZHANG Zhi-qian. Preparation and Preliminary Characterization of Anti-α2δ1/CD3 Bispecific Antibody[J]. China Biotechnology, 2020, 40(7): 9-14.
[9] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.
[10] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[11] YANG Li,SHI Xiao-yu,LI Wen-lei,LI Jian,XU Han-mei. Optimization of Electroporation Conditions in Construction of Phage Display Antibody Library[J]. China Biotechnology, 2020, 40(4): 42-48.
[12] LI Tong-tong,SONG Cai-ling,YANG Kai-yue,WANG Wen-jing,CHEN Hui-yu,LIU Ming. Preparation and Neutralization Activity of Anti-Canine Parvovirus VP2 Protein Single-chain Antibody[J]. China Biotechnology, 2020, 40(4): 10-16.
[13] CHEN Qiu-li,YANG Li-chao,LI Hui,WEN Sha,LI Gang,HE Min. Prokaryotic Expression,Purification and Preparation of Polyclonal Antibody of Human Nek2 Protein[J]. China Biotechnology, 2020, 40(3): 31-37.
[14] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[15] ZHU Xiao-li,HUANG Cui,MA Li-li,ZHANG Chao,GONG Yue,ZHAO Wan-yu,ZHAO Xiu-fang,GUO Wen-jiao,PENG Hao,ZHANG Ji,LIANG Hui-gang. Research Advances of Novel Coronavirus Disease (COVID-19)[J]. China Biotechnology, 2020, 40(1-2): 38-50.