Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (6): 54-65    DOI: 10.13523/j.cb.2201001
    
Research Progress of Glycoprotein Expression in CHO Cells
REN Zi-qiang1,2,WANG Meng-can1,2,ZHANG Hai-ling1,ZHU Xi-qiang2,**(),LIN Jian1,**()
1. College of Life Sciences, Yantai University, Yantai 264005, China
2. Shandong Fengjin Biomedical Co., Ltd., Yantai 264117, China
Download: HTML   PDF(3075KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The Chinese hamster ovary cells(CHO) cell expression system has become a widely used host expression system for the production of glycoproteins due to its high-density culture, high expression characteristics and relatively complete protein glycosylation modification system. Different CHO cell lines and various functional cell lines have been generated to date to meet the needs of large-scale production of glycoproteins and other experimental purposes. In recent years, with the development and application of genetic engineering, protein engineering, cell engineering, fermentation regulation and other technologies, breakthroughs have been made in the yield and degree of glycosylation of glycoproteins produced by CHO cells. However, with the increasing demand for glycoproteins in the biological product market, how to obtain a large quantity of glycoproteins with uniform mixture has also become an urgent problem to be solved. This review introduces the application of CHO and the research progress on gene construction and expression, enzyme engineering, cell lines, molecular chaperones, additives and physical conditions that affect the yield of expressed exogenous proteins and the degree of glycosylation modification in CHO cells. Combined with literature analysis, four directions for future CHO cell research are predicted: the development of new engineered CHO cell lines, a stable CHO expression system, synergistic strategies, and multi-omics applications. It is expected that the yield and quality of glycoproteins expressed by CHO cells can be improved in the future to meet the needs of clinical studies and research.



Key wordsChinese hamster ovary cells(CHO)      Glycoprotein expression      Glycosylation     
Received: 05 January 2022      Published: 07 July 2022
ZTFLH:  Q786  
Corresponding Authors: Xi-qiang ZHU,Jian LIN     E-mail: 15066696818@163.com;linjian3384@163.com
Cite this article:

REN Zi-qiang,WANG Meng-can,ZHANG Hai-ling,ZHU Xi-qiang,LIN Jian. Research Progress of Glycoprotein Expression in CHO Cells. China Biotechnology, 2022, 42(6): 54-65.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2201001     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I6/54

目的蛋白 宿主细胞 目的蛋白功能 参考文献
人体绒毛膜促性腺激素 CHO-K1 检测排卵诱导和治疗某些导致女性不育的疾病 [21]
人类重组β葡萄糖醛酸酶 CHO-K1 作为溶酶体贮积病的酶替代疗法 [22]
MERS-冠状病毒疫苗抗原 CHO-DHFR 针对中东呼吸综合征冠状病毒的亚单位重组蛋白疫苗 [23]
人粗红细胞生产素 CHO-S 肾性贫血的治疗 [24]
免疫球蛋白G CHO-DP12 针对外来抗原的免疫反应中产生的主要类别的免疫球蛋白,可提供有效保护 [25]
γ-干扰素 CHO-DHFR 一种具有抗病毒、抗增殖和免疫调节活性的分泌型糖蛋白 [26-27]
金属蛋白酶组织抑制剂-1 CHO-GS 保持组织完整性的主要参与 [28-29]
重组α-1-抗胰蛋白酶 CHOBRI/rcTA 丝氨酸蛋白酶的血清抑制剂 [30]
凝血因子IX CHO-DG44 凝血缺陷的治疗 [31]
重组人葡萄糖脑苷脂酶 CHO-DXB11(dhfr-) 戈谢病的治疗 [32]
组织纤溶酶原活化剂 CHO-Galk1 用于与溶栓有关的疾病 [33]
人肿瘤抑制蛋白RNASET2 CHO-S 重组新冠疫苗(抗原) [34]
SARS-CoV-2的刺状三聚体 CHO 一种细胞外肿瘤抑制蛋白 [35]
Table 1 Therapeutic glycoproteins produced by CHO cells
基因 功能 实验操作 结果 目的蛋白 参考文献
Bcl-2 抗凋亡 过表达 与对照相比,细胞活力增加了约40% β-肌动蛋白 [71]
Bcl-xL 抗凋亡 过表达 只有2%的细胞数量在24 h内表现出细胞凋亡的迹象 黄色荧光蛋白 [72]
Mcl-1 抗凋亡 过表达 与对照细胞的65%相比,14 d后保持90%的活力 VLA1 [73]
XIAP 抗凋亡 表达 对照组细胞活力下降至40%,表达XIAP的细胞活力保持在90%以上 IAP protein [74]
BaX/Bak 促凋亡 敲除 双基因敲除培养的IgG水平是野生型CHO细胞培养的2~5倍 G免疫球蛋 [75]
Table 2 The effect of up-regulated or knocked-out genes on the expression time of CHO cell lines
Fig.1 The metabolic synthesis pathway of asparagine glycosylation of protein in CHO cells
目的蛋白 实验操作 结果 参考文献
EPO 在SCST1和SCST3细胞中过表达α2,3-ST、CMP-SAS和CMP-SAT 四唾液酸化聚糖是在两种细胞系中均得到增强从8.7%到14.4%和15.5% [104]
IFN-γ CMP-唾液酸转运蛋白的过度表达 IFN-γ的唾液分泌水平增加了4%~16% [10]
Human IgG α-2,3唾液酸转移酶敲除-α-2,6唾液酸转移酶表表达 产生超过75%的唾液酸化聚糖和超过62.5%的双天线二唾液酸化聚糖 [107]
GlycoproteinA 过表达的半乳糖基转移酶-1 唾液酸化糖蛋白A的杠杆率从7.7%增加到14.8% [108]
Recombinant IgG α-2,6唾液酸转移酶的过表达 与野生型CHO宿主细胞相比,唾液酸化的基数程度得到改善 [109]
rhEPO β-3gnt2的敲除 三和四唾液酸化N-聚糖增加了1.5倍和2.7倍以上 [106]
Table 3 Expression and results of glycosylation engineered cells
[1]   Brown D G, Wobst H J. A decade of FDA-approved drugs (2010-2019): trends and future directions. Journal of Medicinal Chemistry, 2021, 64(5): 2312-2338.
doi: 10.1021/acs.jmedchem.0c01516
[2]   Dimitrov D S. Therapeutic proteins. Methods in Molecular Biology (Clifton, N J), 2012, 899: 1-26.
[3]   Mizukami A, Caron A L, Picanço-Castro V, et al. Platforms for recombinant therapeutic glycoprotein production. Methods in Molecular Biology (Clifton, N J), 2018, 1674: 1-14.
[4]   Lalonde M E, Durocher Y. Therapeutic glycoprotein production in mammalian cells. Journal of Biotechnology, 2017, 251: 128-140.
doi: 10.1016/j.jbiotec.2017.04.028
[5]   Puck T T. Genetics of somatic mammalian cells. Advances in Biological 1957, 5: 75-101.
[6]   Wang W, Guo X, Chen S J, et al. Effects of viral promoters, the woodchuck hepatitis post-transcriptional regulatory element, and weakened antibiotic resistance markers on transgene expression in Chinese hamster ovary cells. Process Biochemistry, 2020, 94: 258-265.
doi: 10.1016/j.procbio.2020.04.005
[7]   Wang X Y, Du Q J, Zhang W L, et al. Enhanced transgene expression by optimization of poly A in transfected CHO cells. Frontiers in Bioengineering and Biotechnology, 2022, 10: 722722.
doi: 10.3389/fbioe.2022.722722
[8]   Yi D D, Wang X Y, Zhang W L, et al. Construction of an expression vector mediated by the dual promoter for prokaryotic and mammalian cell expression system. Molecular Biology Reports, 2020, 47(7): 5185-5190.
doi: 10.1007/s11033-020-05593-2
[9]   Feng L, Chen L, Yun J W, et al. Expression of recombinant classical swine fever virus E 2 glycoprotein by endogenous Txnip promoter in stable transgenic CHO cells. Engineering in Life Sciences, 2020, 20(8): 320-330.
doi: 10.1002/elsc.201900147 pmid: 32774204
[10]   Lee Y, Kwak J M, Lee J S. Endogenous p21-dependent transgene control for CHO cell engineering. ACS Synthetic Biology, 2020, 9(7): 1572-1580.
doi: 10.1021/acssynbio.9b00526
[11]   Fan Y J, Jiang W, Ran F L, et al. An efficient exogenous gene insertion site in CHO cells with high transcription level to enhance AID-induced mutation. Biotechnology Journal, 2020, 15(5): e1900313.
[12]   Hilliard W, Lee K H. Systematic identification of safe harbor regions in the CHO genome through a comprehensive epigenome analysis. Biotechnology and Bioengineering, 2021, 118(2): 659-675.
doi: 10.1002/bit.27599 pmid: 33049068
[13]   Ham R G. An improved nutrient solution for diploid Chinese hamster and human cell lines. Experimental Cell Research, 1963, 29: 515-526.
doi: 10.1016/S0014-4827(63)80014-2
[14]   Kao F T, Puck T T. Genetics of somatic mammalian cells, VII induction and isolation of nutritional mutants in Chinese hamster cells. Proceedings of the National Academy of Sciences, 1968, 60(4): 1275-1281.
[15]   Gu M B, Kem J A, Todd P, et al. Effect of amplification of dhfr and lac Z genes on growth and beta-galactosidase expression in suspension cultures of recombinant CHO cells. Cytotechnology, 1992, 9(1-3): 237-245.
pmid: 1369176
[16]   Budge J D, Knight T J, Povey J, et al. Engineering of Chinese hamster ovary cell lipid metabolism results in an expanded ER and enhanced recombinant biotherapeutic protein production. Metabolic Engineering, 2020, 57: 203-216.
doi: 10.1016/j.ymben.2019.11.007
[17]   Feng Y P, Lu J T, Xiao M K, et al. Increasing transgene expression and stability in recombinant CHO cells with DNA methyltransferase Dnmt3b gene knockout via CRISPR/Cas9. Faseb Journal, 2021, 35.
[18]   Kim S H, Baek M, Park S, et al. Improving the secretory capacity of CHO producer cells: the effect of controlled blimp1 expression, a master transcription factor for plasma cells. Metabolic Engineering, 2022, 69: 73-86.
doi: 10.1016/j.ymben.2021.11.001
[19]   Spahn P N, Zhang X L, Hu Q, et al. Restoration of DNA repair mitigates genome instability and increases productivity of Chinese hamster ovary cells. Biotechnology and Bioengineering, 2022, 119(3): 963-982.
doi: 10.1002/bit.28016
[20]   Goh J S Y, Zhang P Q, Chan K F, et al. RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin. Metabolic Engineering, 2010, 12(4): 360-368.
doi: 10.1016/j.ymben.2010.03.002
[21]   Liu Y, Yi X P, Zhuang Y P, et al. Limitations in the process of transcription and translation inhibit recombinant human chorionic gonadotropin expression in CHO cells. Journal of Biotechnology, 2015, 204: 63-69.
doi: 10.1016/j.jbiotec.2014.12.005
[22]   Parhiz H, Ketcham S A, Zou G Z, et al. Differential effects of bioreactor process variables and purification on the human recombinant lysosomal enzyme β-glucuronidase produced from Chinese hamster ovary cells. Applied Microbiology and Biotechnology, 2019, 103(15): 6081-6095.
doi: 10.1007/s00253-019-09889-7
[23]   Nyon M P, Du L Y, Tseng C T K, et al. Engineering a stable CHO cell line for the expression of a MERS-coronavirus vaccine antigen. Vaccine, 2018, 36(14): 1853-1862.
doi: 10.1016/j.vaccine.2018.02.065
[24]   Chai Y R, Ge M M, Wei T T, et al. Human rhinovirus internal ribosome entry site element enhances transgene expression in transfected CHO-S cells. Scientific Reports, 2018, 8(1): 6661.
doi: 10.1038/s41598-018-25049-9
[25]   Capella Roca B, Alarcón Miguez A, Keenan J, et al. Zinc supplementation increases protein titer of recombinant CHO cells. Cytotechnology, 2019, 71(5): 915-924.
doi: 10.1007/s10616-019-00334-1 pmid: 31396753
[26]   Wong N S C, Yap M G S, Wang D I C. Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnology and Bioengineering, 2010, 93(5): 1005-1016.
doi: 10.1002/bit.20815
[27]   Schreiber R D, Farrar M A. The biology and biochemistry of interferon-gamma and its receptor. Gastroenterologia Japonica, 1993, 28(Suppl 4): 88-94.
[28]   Baker K N, Rendall M H, Hills A E, et al. Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnology and Bioengineering, 2001, 73(3): 188-202.
pmid: 11257601
[29]   Grünwald B, Schoeps B, Krüger A. Recognizing the molecular multifunctionality and interactome of TIMP-1. Trends in Cell Biology, 2019, 29(1): 6-19.
doi: S0962-8924(18)30144-2 pmid: 30243515
[30]   Lalonde M E, Koyuturk I, Brochu D, et al. Production of α2,6-sialylated and non-fucosylated recombinant alpha-1-antitrypsin in CHO cells. Journal of Biotechnology, 2020, 307: 87-97.
doi: 10.1016/j.jbiotec.2019.10.021
[31]   Kovnir S V, Orlova N A, Shakhparonov M I, et al. A highly productive CHO cell line secreting human blood clotting factor IX. Acta Naturae, 2018, 10(1): 51-65.
pmid: 29713519
[32]   Novo J B, Morganti L, Moro A M, et al. Generation of a Chinese hamster ovary cell line producing recombinant human glucocerebrosidase. Journal of Biomedicine and Biotechnology, 2012, 2012: 875383.
[33]   Jiménez N, Martínez V S, Gerdtzen Z P. Engineering CHO cells galactose metabolism to reduce lactate synthesis. Biotechnology Letters, 2019, 41(6-7): 779-788.
doi: 10.1007/s10529-019-02680-8 pmid: 31065855
[34]   Hanada K, Sasaki T. Expression and purification of recombinant fibulins in mammalian cells. Methods in Cell Biology, 2018, 143: 247-259.
[35]   Liu H T, Zhou C L, An J, et al. Development of recombinant COVID-19 vaccine based on CHO-produced, prefusion spike trimer and alum/CpG adjuvants. Vaccine, 2021, 39(48): 7001-7011.
doi: 10.1016/j.vaccine.2021.10.066
[36]   Torres M, Dickson A J. Overexpression of transcription factor BLIMP1/prdm1 leads to growth inhibition and enhanced secretory capacity in Chinese hamster ovary cells. Metabolic Engineering, 2021, 67: 237-249.
doi: 10.1016/j.ymben.2021.07.004 pmid: 34265400
[37]   Torres M, Dickson A J. Reprogramming of Chinese hamster ovary cells towards enhanced protein secretion. Metabolic Engineering, 2022, 69: 249-261.
doi: 10.1016/j.ymben.2021.12.004
[38]   Torres M, Dickson A J. Combined gene and environmental engineering offers a synergetic strategy to enhance r-protein production in Chinese hamster ovary cells. Biotechnology and Bioengineering, 2022, 119(2): 550-565.
doi: 10.1002/bit.28000
[39]   Wurm M J, Wurm F M. Naming CHO cells for bio-manufacturing: genome plasticity and variant phenotypes of cell populations in bioreactors question the relevance of old names. Biotechnology Journal, 2021, 16(7): e2100165.
[40]   Reinhart D, Damjanovic L, Kaisermayer C, et al. Bioprocessing of recombinant CHO-K1, CHO-DG44, and CHO-S: CHO expression hosts favor either mAb production or biomass synthesis. Biotechnology Journal, 2019, 14(3): e1700686.
[41]   Jain N K, Barkowski-Clark S, Altman R, et al. A high density CHO-S transient transfection system: comparison of ExpiCHO and Expi293. Protein Expression and Purification, 2017, 134: 38-46.
doi: 10.1016/j.pep.2017.03.018
[42]   Betts Z, Dickson A J. Assessment of UCOE on recombinant EPO production and expression stability in amplified Chinese hamster ovary cells. Molecular Biotechnology, 2015, 57(9): 846-858.
doi: 10.1007/s12033-015-9877-y
[43]   Grav L M, la Cour Karottki K J, Lee J S, et al. Application of CRISPR/Cas 9 genome editing to improve recombinant protein production in CHO cells. Methods in Molecular Biology (Clifton, N J), 2017, 1603: 101-118.
[44]   Huhn S C, Ou Y, Tang X Y, et al. Improvement of the efficiency and quality in developing a new CHO host cell line. Biotechnology Progress, 2021, 37(5): e3185.
[45]   Yang B, Zhou J T, Zhao H, et al. Study of the mechanism for increased protein expression via transcription potency reduction of the selection marker. Bioprocess and Biosystems Engineering, 2019, 42(5): 799-806.
doi: 10.1007/s00449-019-02083-z pmid: 30730009
[46]   Rajendra Y, Kiseljak D, Baldi L, et al. A simple high-yielding process for transient gene expression in CHO cells. Journal of Biotechnology, 2011, 153(1-2): 22-26.
doi: 10.1016/j.jbiotec.2011.03.001 pmid: 21392548
[47]   Rajendra Y, Balasubramanian S, Hacker D L. Large-scale transient transfection of Chinese hamster ovary cells in suspension. Methods in Molecular Biology (Clifton, N J), 2017, 1603: 45-55.
[48]   Kim J M, Kim J S, Park D H, et al. Improved recombinant gene expression in CHO cells using matrix attachment regions. Journal of Biotechnology, 2004, 107(2): 95-105.
doi: 10.1016/j.jbiotec.2003.09.015
[49]   Horga L G, Halliwell S, Castiñeiras T S, et al. Tuning recombinant protein expression to match secretion capacity. Microbial Cell Factories, 2018, 17(1): 199.
doi: 10.1186/s12934-018-1047-z
[50]   Fomina-Yadlin D, Mujacic M, Maggiora K, et al. Transcriptome analysis of a CHO cell line expressing a recombinant therapeutic protein treated with inducers of protein expression. Journal of Biotechnology, 2015, 212: 106-115.
doi: 10.1016/j.jbiotec.2015.08.025 pmid: 26325199
[51]   Coats M T, Bydlinski N, Maresch D, et al. mRNA transfection into CHO-cells reveals production bottlenecks. Biotechnology Journal, 2020, 15(2): e1900198.
[52]   Kim H, Kim J S. A guide to genome engineering with programmable nucleases. Nature Reviews Genetics, 2014, 15(5): 321-334.
doi: 10.1038/nrg3686
[53]   Srirangan K, Loignon M, Durocher Y. The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese hamster ovary cells: retrospective analysis and future directions. Critical Reviews in Biotechnology, 2020, 40(6): 833-851.
doi: 10.1080/07388551.2020.1768043 pmid: 32456474
[54]   Gaidukov L, Wroblewska L, Teague B, et al. A multi-landing pad DNA integration platform for mammalian cell engineering. Nucleic Acids Research, 2018, 46(8): 4072-4086.
doi: 10.1093/nar/gky216 pmid: 29617873
[55]   Inniss M C, Bandara K, Jusiak B, et al. A novel Bxb 1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO cells. Biotechnology and Bioengineering, 2017, 114(8): 1837-1846.
doi: 10.1002/bit.26268 pmid: 28186334
[56]   Zhu J W. Mammalian cell protein expression for biopharmaceutical production. Biotechnology Advances, 2012, 30(5): 1158-1170.
doi: 10.1016/j.biotechadv.2011.08.022
[57]   Ohira T, Miyauchi K, Uno N, et al. An efficient protein production system via gene amplification on a human artificial chromosome and the chromosome transfer to CHO cells. Scientific Reports, 2019, 9: 16954.
doi: 10.1038/s41598-019-53116-2
[58]   Kennard M L, Goosney D L, Monteith D, et al. The generation of stable, high mAb expressing CHO cell lines based on the artificial chromosome expression (ACE) technology. Biotechnology and Bioengineering, 2009, 104(3): 540-553.
doi: 10.1002/bit.22406
[59]   Asoshina M, Myo G, Tada N, et al. Targeted amplification of a sequence of interest in artificial chromosome in mammalian cells. Nucleic Acids Research, 2019, 47(11): 5998-6006.
doi: 10.1093/nar/gkz343 pmid: 31062017
[60]   Uno N, Hiramatsu K, Uno K, et al. CRISPR/Cas9-induced transgene insertion and telomere-associated truncation of a single human chromosome for chromosome engineering in CHO and A9 cells. Scientific Reports, 2017, 7: 12739.
doi: 10.1038/s41598-017-10418-7
[61]   Kennard M L, Goosney D L, Monteith D, et al. Auditioning of CHO host cell lines using the artificial chromosome expression (ACE) technology. Biotechnology and Bioengineering, 2009, 104(3): 526-539.
doi: 10.1002/bit.22407
[62]   Pourcel L, Buron F, Arib G, et al. Influence of cytoskeleton organization on recombinant protein expression by CHO cells. Biotechnology and Bioengineering, 2020, 117(4): 1117-1126.
doi: 10.1002/bit.27277
[63]   Ritter A, Voedisch B, Wienberg J, et al. Deletion of a telomeric region on chromosome 8 correlates with higher productivity and stability of CHO cell lines. Biotechnology and Bioengineering, 2016, 113(5): 1084-1093.
doi: 10.1002/bit.25876 pmid: 26523402
[64]   Ritter A, Nuciforo S, Schulze A, et al. Fam60A plays a role for production stabilities of recombinant CHO cell lines. Biotechnology and Bioengineering, 2017, 114(3): 701-704.
doi: 10.1002/bit.26181 pmid: 27617904
[65]   Chen K M, Li D, Li H W, et al. Improved recombinant protein production by regulation of transcription and protein transport in Chinese hamster ovary cells. Biotechnology Letters, 2019, 41(6-7): 719-732.
doi: 10.1007/s10529-019-02681-7
[66]   Poulain A, Mullick A, Massie B, et al. Reducing recombinant protein expression during CHO pool selection enhances frequency of high-producing cells. Journal of Biotechnology, 2019, 296: 32-41.
doi: 10.1016/j.jbiotec.2019.03.009
[67]   Aeschlimann S H, Graf C, Mayilo D, et al. Enhanced CHO clone screening: application of targeted locus amplification and next-generation sequencing technologies for cell line development. Biotechnology Journal, 2019, 14(7): e1800371.
[68]   Chang K H, Jeong Y T, Kwak C Y, et al. Effect of mild-thiol reducing agents and alpha2, 3-sialyltransferase expression on secretion and sialylation of recombinant EPO in CHO cells. Journal of Microbiology and Biotechnology, 2013, 23(5): 699-706.
pmid: 23648861
[69]   Mortazavi M, Shokrgozar M A, Sardari S, et al. Using chemical chaperones to increase recombinant human erythropoietin secretion in CHO cell line. Preparative Biochemistry & Biotechnology, 2019, 49(6): 535-544.
[70]   Kim N S, Lee G M. Overexpression of bcl-2 inhibits sodium butyrate-induced apoptosis in Chinese hamster ovary cells resulting in enhanced humanized antibody production. Biotechnology and Bioengineering, 2000, 71(3): 184-193.
pmid: 11291028
[71]   Baek E, Noh S M, Lee G M. Anti-apoptosis engineering for improved protein production from CHO cells. Methods in Molecular Biology (Clifton, N J), 2017, 1603: 71-85.
[72]   Zustiak M P, Jose L, Xie Y Q, et al. Enhanced transient recombinant protein production in CHO cells through the co-transfection of the product gene with Bcl-xL. Biotechnology Journal, 2014, 9(9): 1164-1174.
doi: 10.1002/biot.201300468
[73]   Majors B S, Betenbaugh M J, Pederson N E, et al. Mcl-1 overexpression leads to higher viabilities and increased production of humanized monoclonal antibody in Chinese hamster ovary cells. Biotechnology Progress, 2009, 25(4): 1161-1168.
doi: 10.1002/btpr.192 pmid: 19551877
[74]   Liew J C J, Tan W S, Alitheen N B M, et al. Over-expression of the X-linked inhibitor of apoptosis protein (XIAP) delays serum deprivation-induced apoptosis in CHO-K1 cells. Journal of Bioscience and Bioengineering, 2010, 110(3): 338-344.
doi: 10.1016/j.jbiosc.2010.02.017
[75]   Cost G J, Freyvert Y, Vafiadis A, et al. BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnology and Bioengineering, 2010, 105(2): 330-340.
doi: 10.1002/bit.22541
[76]   Ha T K, Kim Y G, Lee G M. Effect of lithium chloride on the production and sialylation of Fc-fusion protein in Chinese hamster ovary cell culture. Applied Microbiology and Biotechnology, 2014, 98(22): 9239-9248.
doi: 10.1007/s00253-014-6012-0
[77]   Cha H Y J, Park J H. Recombinant human erythropoietin production in Chinese hamster ovary cells is enhanced by supplementation of α-helix domain of 30Kc19 protein. Applied Sciences, 2021, 11(22): 11009.
doi: 10.3390/app112211009
[78]   Kido M, Idogaki H, Nishikawa K, et al. Violacein improves recombinant IgG production by controlling the cell cycle of Chinese hamster ovary cells. Cytotechnology, 2021, 73(3): 319-332.
doi: 10.1007/s10616-020-00434-3
[79]   Ghafuri-Esfahani A, Shokri R, Sharifi A, et al. Optimization of parameters affecting on CHO cell culture producing recombinant erythropoietin. Preparative Biochemistry & Biotechnology, 2020, 50(8): 834-841.
[80]   Morris A E, Schmid J. Effects of insulin and LongR3 on serum-free Chinese hamster ovary cell cultures expressing two recombinant proteins. Biotechnology Progress, 2000, 16(5): 693-697.
pmid: 11027158
[81]   Adamson L, Walum E. Insulin and IGF-1 mediated inhibition of apoptosis in CHO cells grown in suspension in a protein-free medium. Alternatives to Laboratory Animals, 2007, 35(3): 349-352.
doi: 10.1177/026119290703500301
[82]   Cervera L, Gutiérrez-Granados S, Berrow N S, et al. Extended gene expression by medium exchange and repeated transient transfection for recombinant protein production enhancement. Biotechnology and Bioengineering, 2015, 112(5): 934-946.
doi: 10.1002/bit.25503 pmid: 25421734
[83]   Gomez N, Barkhordarian H, Lull J, et al. Perfusion CHO cell culture applied to lower aggregation and increase volumetric productivity for a bispecific recombinant protein. Journal of Biotechnology, 2019, 304: 70-77.
doi: 10.1016/j.jbiotec.2019.08.001
[84]   Lee J H, Jeong Y R, Kim Y G, et al. Understanding of decreased sialylation of Fc-fusion protein in hyperosmotic recombinant Chinese hamster ovary cell culture: N-glycosylation gene expression and N-linked glycan antennary profile. Biotechnology and Bioengineering, 2017, 114(8): 1721-1732.
doi: 10.1002/bit.26284
[85]   Ghezlou M, Mokhtari F, Kalbasi A, et al. Aggregate forms of recombinant human erythropoietin with different charge profile substantially impact biological activities. Journal of Pharmaceutical Sciences, 2020, 109(1): 277-283.
doi: 10.1016/j.xphs.2019.05.036
[86]   Chan P, Curtis R A, Warwicker J. Soluble expression of proteins correlates with a lack of positively-charged surface. Scientific Reports, 2013, 3: 3333.
doi: 10.1038/srep03333
[87]   Carballo-Amador M A, McKenzie E A, Dickson A J, et al. Surface patches on recombinant erythropoietin predict protein solubility: engineering proteins to minimise aggregation. BMC Biotechnology, 2019, 19(1): 26.
doi: 10.1186/s12896-019-0520-z pmid: 31072369
[88]   Yadav D K, Yadav N, Yadav S, et al. An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Archives of Biochemistry and Biophysics, 2016, 612: 57-77.
doi: 10.1016/j.abb.2016.10.012
[89]   Wingfield P T. Overview of the purification of recombinant proteins. Current Protocols in Protein Science, 2015, 80(1): 6.1. 1-6.1.35.
[90]   Zvonova E A, Ershov A V, Ershova O A, et al. PASylation technology improves recombinant interferon-β1b solubility, stability, and biological activity. Applied Microbiology and Biotechnology, 2017, 101(5): 1975-1987.
doi: 10.1007/s00253-016-7944-3
[91]   Wiesler S C, Weinzierl R O J. Robotic high-throughput purification of affinity-tagged recombinant proteins. Methods in Molecular Biology (Clifton, N J), 2015, 1286: 97-106.
[92]   Ruan A, Ren C, Quan S. Conversion of the molecular chaperone Spy into a novel fusion tag to enhance recombinant protein expression. Journal of Biotechnology, 2020, 307: 131-138.
doi: 10.1016/j.jbiotec.2019.11.006
[93]   Knappskog S, Ravneberg H, Gjerdrum C, et al. The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide. Journal of Biotechnology, 2007, 128(4): 705-715.
pmid: 17316861
[94]   Kober L, Zehe C, Bode J. Optimized signal peptides for the development of high expressing CHO cell lines. Biotechnology and Bioengineering, 2013, 110(4): 1164-1173.
doi: 10.1002/bit.24776 pmid: 23124363
[95]   Haryadi R, Ho S, Kok Y J, et al. Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells. PLoS One, 2015, 10(2): e0116878.
doi: 10.1371/journal.pone.0116878
[96]   Eichler J. Protein glycosylation. Current Biology: CB, 2019, 29(7): R229-R231.
doi: 10.1016/j.cub.2019.01.003
[97]   Fukuda M N, Sasaki H, Lopez L, et al. Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood, 1989, 73(1): 84-89.
pmid: 2910371
[98]   Imai-Nishiya H, Mori K, Inoue M, et al. Double knockdown of alpha1, 6-fucosyltransferase (FUT8) and GDP-mannose 4, 6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnology, 2007, 7: 84.
pmid: 18047682
[99]   Wang Q, Wang T X, Yang S, et al. Metabolic engineering challenges of extending N-glycan pathways in Chinese hamster ovary cells. Metabolic Engineering, 2020, 61: 301-314.
doi: 10.1016/j.ymben.2020.06.007
[100]   Wang Q, Yang G L, Wang T X, et al. Characterization of intact glycopeptides reveals the impact of culture media on site-specific glycosylation of EPO-Fc fusion protein generated by CHO-GS cells. Biotechnology and Bioengineering, 2019, 116(9): 2303-2315.
doi: 10.1002/bit.27009
[101]   Ehret J, Zimmermann M, Eichhorn T, et al. Impact of cell culture media additives on IgG glycosylation produced in Chinese hamster ovary cells. Biotechnology and Bioengineering, 2019, 116(4): 816-830.
[102]   Yin B J, Wang Q, Chung C Y, et al. Butyrated ManNAc analog improves protein expression in Chinese hamster ovary cells. Biotechnology and Bioengineering, 2018, 115(6): 1531-1541.
doi: 10.1002/bit.26560
[103]   Yin B J, Wang Q, Chung C Y, et al. A novel sugar analog enhances sialic acid production and biotherapeutic sialylation in CHO cells. Biotechnology and Bioengineering, 2017, 114(8): 1899-1902.
doi: 10.1002/bit.26291
[104]   Kwak C Y, Park S Y, Lee C G, et al. Enhancing the sialylation of recombinant EPO produced in CHO cells via the inhibition of glycosphingolipid biosynthesis. Scientific Reports, 2017, 7: 13059.
doi: 10.1038/s41598-017-13609-4
[105]   Wang Z S, Park J H, Park H H, et al. Enhancement of recombinant human EPO production and sialylation in Chinese hamster ovary cells through Bombyx mori 30Kc19 gene expression. Biotechnology and Bioengineering, 2011, 108(7): 1634-1642.
doi: 10.1002/bit.23091
[106]   Lee C G, Oh M J, Park S Y, et al. Inhibition of poly-LacNAc biosynthesis with release of CMP-Neu5Ac feedback inhibition increases the sialylation of recombinant EPO produced in CHO cells. Scientific Reports, 2018, 8: 7273.
doi: 10.1038/s41598-018-25580-9
[107]   Chung C Y, Wang Q, Yang S, et al. Integrated genome and protein editing swaps α-2, 6 sialylation for α-2, 3 sialic acid on recombinant antibodies from CHO. Biotechnology Journal, 2017, 12(2): 1600502.
doi: 10.1002/biot.201600502
[108]   Zhong X T, Ma W J, Meade C L, et al. Transient CHO expression platform for robust antibody production and its enhanced N-glycan sialylation on therapeutic glycoproteins. Biotechnology Progress, 2019, 35(1): e2724.
doi: 10.1002/btpr.2724
[109]   Lin N, Mascarenhas J, Sealover N R, et al. Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression. Biotechnology Progress, 2015, 31(2): 334-346.
doi: 10.1002/btpr.2038
[110]   Kaneko Y, Nimmerjahn F, Ravetch J V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science, 2006, 313(5787): 670-673.
doi: 10.1126/science.1129594
[111]   Anthony R M, Nimmerjahn F, Ashline D J, et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science, 2008, 320(5874): 373-376.
doi: 10.1126/science.1154315 pmid: 18420934
[112]   Wang M Q, Wang Y, Liu K M, et al. Engineering a bacterial sialyltransferase for di-sialylation of a therapeutic antibody. Organic & Biomolecular Chemistry, 2020, 18(15): 2886-2892.
[113]   Wang A L, Zhou Y, Palmieri M J, et al. Hydrogen deuterium exchange reveals changes to protein dynamics of recombinant human erythropoietin upon N- and O- desialylation. Journal of Pharmaceutical and Biomedical Analysis, 2018, 154: 454-459.
doi: 10.1016/j.jpba.2018.02.060
[114]   Fischer B E, Dorner F. Recombinant coagulation factor IX: glycosylation analysis and in vitro conversion into human-like sialylation pattern. Thrombosis Research, 1998, 89(3): 147-150.
pmid: 9622043
[115]   Zhang P Q, Tan D L, Heng D, et al. A functional analysis of N-glycosylation-related genes on sialylation of recombinant erythropoietin in six commonly used mammalian cell lines. Metabolic Engineering, 2010, 12(6): 526-536.
doi: 10.1016/j.ymben.2010.08.004
[116]   Stolfa G, Smonskey M T, Boniface R, et al. CHO-omics review: the impact of current and emerging technologies on Chinese hamster ovary based bioproduction. Biotechnology Journal, 2018, 13(3): 1700227.
doi: 10.1002/biot.201700227
[117]   Yang G L, Hu Y W, Sun S S, et al. Comprehensive glycoproteomic analysis of Chinese hamster ovary cells. Analytical Chemistry, 2018, 90(24): 14294-14302.
doi: 10.1021/acs.analchem.8b03520
[118]   Stavenhagen K, Gahoual R, Dominguez Vega E, et al. Site-specific N- and O-glycosylation analysis of atacicept. mAbs, 2019, 11(6): 1053-1063.
doi: 10.1080/19420862.2019.1630218 pmid: 31349756
[119]   Kakuta Y, Okino N, Kajiwara H, et al. Crystal structure of Vibrionaceae Photobacterium sp. JT-ISH-224 α2, 6-sialyltransferase in a ternary complex with donor product CMP and acceptor substrate lactose: catalytic mechanism and substrate recognition. Glycobiology, 2008, 18(1): 66-73.
doi: 10.1093/glycob/cwm119
[1] LIN Yan-mei,LUO Xiang,LI Rui-jie,QIN Xiu-lin,FENG Jia-xun. Probing the Role of N-glycosylation on the Catalytic Domain in the Activity and Secretion of Fungal Cellobiohydrolase[J]. China Biotechnology, 2021, 41(4): 18-29.
[2] CHEN Xin-yi,LIU Hu,DAI Da-zhang,LI Chun. Strategies to Improve Crystallizability of Glycosylated Enzyme[J]. China Biotechnology, 2020, 40(3): 154-162.
[3] JIANG Yi-fan,JIA Yu,Wang Long,WANG Zhi-ming. The Glycosylation Design and Control of Monoclonal Antibody by Cell Culture[J]. China Biotechnology, 2019, 39(8): 95-103.
[4] Qing-meng LI,Sheng-tao LI,Ning WANG,Xiao-dong GAO. Expression, Purification and Activity Assay of Yeast α-1,2 Mannosyltransferase Alg11[J]. China Biotechnology, 2018, 38(6): 26-33.
[5] Xiao-chen LIU,Hu LIU,Liang ZHANG,Chun LI. Enzymatic Glycosylation and Its Function in Metabolic Process of Cells[J]. China Biotechnology, 2018, 38(1): 69-77.
[6] XU Yun-qiao, LI Ting-ting, WU Cai-e, FAN Gong-jian, LI Tong. Research Progress on the Methods of Deglycosylation of Glycoproteins[J]. China Biotechnology, 2017, 37(5): 97-106.
[7] HUANG Jia-hui, WANG Cai-kun, QIN Jin-hong, CHEN Long-guan, HUANG Yun-na, XIE Qiu-ling. The Impact of N-glycosylation on TNFR-Fc Fusion Protein Conformation Stability and Bioactivity[J]. China Biotechnology, 2016, 36(5): 12-19.
[8] ZHOU Ting-ting, PAN Chuan-yong, ZHANG Jian-peng, JIN Hui-ying. The Research of the Glycosylation of Sodium Channel β4 Subunit[J]. China Biotechnology, 2014, 34(7): 10-16.
[9] ZHAO Feng, ZHANG Yi-jun, RAN Yan-hong, WANG Xing-yong, YE Qian-jun, LI Hong-jian. Analysis of rhIL-12 Disulfide Bond And N-glycosylation Sites and C-terminal Amino Acid Sequence[J]. China Biotechnology, 2014, 34(5): 39-53.
[10] GAO Guang-wei, LI Gui-lin, HUANG Jia-yu, LI Da-wei. Study of the Effects of A and C-Domain Glycosylation Sites on the Secretion and Activity of Recombinant Factor Ⅷ[J]. China Biotechnology, 2014, 34(10): 1-7.
[11] XIE Chun-fang, LI Yu-feng, LIU Da-ling, YAO Dong-sheng. The Stability Reconstruction of β-mannanase with N-glycosylation Modification[J]. China Biotechnology, 2013, 33(12): 79-85.
[12] MA Zhong-rui, HAN Dong-lei, ZHAO Jun-fei, CHEN Meng-lin, CHEN Min. Recent Developments in N-linked Glycoproteins Production in Escherichia coli and Glycoprotein Vaccines[J]. China Biotechnology, 2013, 33(11): 92-98.
[13] LIU Jun, CHEN Ming. Natural Product Glycosylation and Aglycone Diversifcation[J]. China Biotechnology, 2012, 32(04): 103-109.
[14] YAN Liang, YANG Wen-Zhu, WANG Xin-Yu, ZHOU Wen-Zhi, TAO Bin, CHEN Ru-Mei, FAN Yun-Liu. Construction and Expression Analyse of N-linked Glycosylation Site Mutants of phyA2 Gene from Aspergillus niger 963[J]. China Biotechnology, 2010, 30(06): 54-59.
[15] LI Qiao-Qiao, WANG Qing-Lu, ZHANG Yu-Jun, ZHANG Dui, XU Shou-Ceng. Cloning and Expression in Pichia pastoris of Human Granulocyte-macrophage Colony Stimulating Factor[J]. China Biotechnology, 2010, 30(01): 35-40.