Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (5): 97-106    DOI: 10.13523/j.cb.20170512
    
Research Progress on the Methods of Deglycosylation of Glycoproteins
XU Yun-qiao, LI Ting-ting, WU Cai-e, FAN Gong-jian, LI Tong
College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Download: HTML   PDF(654KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Glycomics is emerging after genomics and proteomics research, glycosylation is an important post-translation modification of proteins which plays an significant role in many biological processes, abnormal glycosylation is closely related to the occurrence of some diseases development, therefore, glycosylation research has become a hot research topic. Deglycosylation can affect the activity, secretion and other physical and chemical properties of glycoprotein, and deglycosylation is also the main technical means of glycosylation research, various methods of deglycosylation, the advantages and disadvantages of various methods and the applicable scope as well as the detection methods of the deglycosylation were summarized, and provided a reference for the study of structure-activity macromolecules.



Key wordsGlycosylation      Structure-activity      Deglycosylation      Technical means      Glycoprotein     
Received: 02 December 2016      Published: 25 May 2017
ZTFLH:  Q513+.2  
Cite this article:

XU Yun-qiao, LI Ting-ting, WU Cai-e, FAN Gong-jian, LI Tong. Research Progress on the Methods of Deglycosylation of Glycoproteins. China Biotechnology, 2017, 37(5): 97-106.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170512     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I5/97

[1] Bernd M, Heiko M. Conformation of glycopeptides and glycoproteins. Cheminform, 2006, 38(50):187-251.
[2] Newrzella D, Stoffel W. Functional analysis of the glycosylation of murine acid sphingomyelinase.. Journal of Biological Chemistry, 1996, 271(50):32089-32095.
[3] Hoshida H, Fujita T, Cha-Aim K, et al. N-glycosylation deficiency enhanced heterologous production of a Bacillus licheniformis thermostable α-amylase in Saccharomyces cerevisiae. Applied Microbiology & Biotechnology, 2013, 97(12):5473-5482.
[4] Byatt J C, Welply J K, Leimgruber R M, et al. Characterization of glycosylated bovine placental lactogen and the effect of enzymatic deglycosylation on receptor binding and biological activit.. Endocrinology, 1990, 127(3):1041-1049.
[5] Robert G, Elner R, Lisa M, et al.Glycoprotein Analysis Manual. 1st Ed. Poole:Sigma-Aldrich, 2004, 22-23.
[6] Suzuki T. A Cytoplasmic Peptide:N-glycanase and ER-Associated Degradation.//Naoyuki T.Experimental Glycoscience. Springer Japan, 2008:201-203.
[7] Butters T, Neville D. Glycoprotein Analysis. UK:Molecular Biomethods Handbook, 2007:491-502.
[8] Steube K, Gross V, Hösel W, et al. Different susceptibilitiesof complex-, hybrid-and high-mannose-type α1-inhibitor and α1-acid glycoprotein to endo-β-N-acetylglucosaminidase F and peptide:N-glycosidase F.Glycoconjugate Journal, 1986, 3(3):247-254.
[9] Hirani S, Bernasconi R J, Rasmussen J R. Use of N-glycanase to release asparagine-linked oligosaccharides for structural analysis. Analytical Biochemistry, 1987, 162(2):485-492.
[10] Mann A C, Self C H, Turner G A. A general method for the complete deglycosylation of a wide variety of serum glycoproteins using peptide-N -glycosidase-F. Glycosylation & Disease, 1994, 1(4):253-261.
[11] R Nuck, M Zimmermann, D Sauvageot, et al. Optimized deglycosylation of glycoproteins by peptide-N4-(N-acetyl-beta-glucosaminyl)-asparagine amidase from Flavobacterium meningosepticum. Glycoco Njugate Journal, 1990, 7(4):279-286.
[12] Altmann F, Schweiszer S, Weber C. Kinetic comparison of peptide:N-glycosidases F and A reveals several differences in substrate specificity. Glycoconjugate Journal, 1995, 12(1):84-93.
[13] Yagi H, Yasukawa N, Yu S, et al. The expression of sialylated high-antennary N-glycans in edible bird's nest.Carbohydrate Research,2008,343(8):1373-1377.
[14] Kim B S, Hwang H S, Park H, et al. Effects of selective cleavage of high-mannose-type glycans of Maackia amurensis, leukoagglutinin on sialic acid-binding activity. Biochimica Et Biophysica Acta, 2015, 1850(9):1815-1821.
[15] Duan C, Rosen S, Towt J, et al. Generation of carbohydrate-deficient transferrin by enzymatic deglycosylation of human transferrin.. Applied Biochemistry & Biotechnology, 1998, 69(3):217-224.
[16] Marcus S E, Bowles D J. Deglycosylation of a lectin intermediate during assembly of Con A. Protoplasma, 1988, 147(2-3):113-116.
[17] Koutsioulis D, Landry D, Guthrie E P. Novel endo-α-N-acetylgalactosaminidases with broader substrate specificity. Glycobiology, 2008, 18(10):799-805.
[18] Ishii-Karakasa I, Iwase H, Hotta K. Structural determination of the O-linked sialyl oligosaccharides liberated from fetuin with endo-α-N-acetylgalacto saminidase-S by HPLC analysis and 600-MHz 1 H-NMR spectroscopy. European Journal of Biochemistry, 1997, 247(2):709-715.
[19] Stubbs H J, Brasch D J, Emerson G W, et al. Hydrolase and transferase activities of the β-1,3-exoglucanase of Candida albicans. European Journal of Biochemistry, 1999, 263(3):889-895.
[20] Abd Hamid U M, Royle L, Saldova R, et al. A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression.. Glycobiology, 2008, 18(12):1105-1118.
[21] 杜先锋, 许时婴, 王璋. 黏液糖蛋白去糖基化作用的研究进展. 天然产物研究与开发, 1997, 10(4):95-96. Du X F, Xu S Y,Wang Z. research progress on the role of Mucin glycoprotein in deglycosylation. Journal of Natural Products Research and Development, 1997, 10(4):95-96.
[22] Rajesh T, Jeon J M, Song E, et al. Putative role of a Streptomyces coelicolor-derived α-mannosidase in deglycosylation and antibiotic production.. Applied Biochemistry & Biotechnology, 2014, 172(3):1639-1651.
[23] Quaranta A, Srokabartnicka A, Tengstrand E, et al. N-glycan profile analysis of transferrin using a microfluidic compact disc and MALDI-MS. Analytical & Bioanalytical Chemistry, 2016, 408(17):4765-4776.
[24] Rehm H. Enzymatic deglycosylation of the dendrotoxin-binding protein. Febs Letters, 1989, 247(1):28-30.
[25] Mizuochi T, Hounsell E F. Release of N-Linked Oligosaccharide Chains by Hydrazinolysis.The Protein Protocols Handbook. UK:Humana Press, 2002:1239-1242.
[26] Satake K, Miyatake N, Kamo M, et al. Partial hydrazinolysis of protein at the asparaginyl linkage. Journal of Protein Chemistry, 1992, 11(4):366-367.
[27] Iwase H, Ishii-Karakasa I, Hotta K. S20.12 Analysis of protein portion of porcine gastric mucus glycoprotein after release of O-linked oligosaccharide by gas-phase hydrazinolysis. Glycoconjugate Journal, 1993, 10(4):345-345.
[28] Brockhausen I, Grey A A, Pang H, et al. N-acetylglucosaminyltransferase substrates prepared from glycoproteins by hydrazinolysis of the asparagine-N-acetylglucosamine linkage. Purification and structural determination of oligosaccharides with mannose and N-acetylglucosamine at the non-reducing termini. Glycoconjugate Journal, 1989, 5(4):419-448.
[29] Gerken T A, Gupta R, Jentoft N. A novel approach for chemically deglycosylating O-linked glycoproteins. The deglycosylation of submaxillary and respiratory mucins. Biochemistry, 1992, 31(3):639-648.
[30] 丛莉, 陈小平. 日本血吸虫虫卵可溶性糖蛋白去糖基化对其刺激机体产生Th2免疫应答能力的影响. 国际医学寄生虫病杂志, 2011, 38(5):261-264. Cong L, Chen X P. The deglycosylation of soluble glycoprotein from Schistosoma japonicum eggs on its ability to stimulate the body to produce Th2 immune response. International Journal of Medical Parasitic Diseases, 2011, 38(5):261-264.
[31] Hong J C, Kim Y S. Alkali-catalyzed beta-elimination of periodate-oxidized glycans:a novel method of chemical deglycosylation of mucin gene products in paraffin embedded sections. Glycoconjugate Journal, 2000, 17(10):691-703.
[32] 佟巍. 基于化学衍生化的蛋白质N-糖链质谱鉴定新方法研究. 北京:中国人民解放军军事医学科学院, 2012, 5:5-10. Wei T.Based on the Chemical Derivatization of Protein N-sugar Chain Mass Spectrometry to Identify New Method Research. Beijing:The Academy of Military Medical Sciences of the Chinese PLA, 2012:5-10.
[33] Yadav S C, Prasanna Kumari N K, Jagannadham M V. Deglycosylated milin unfolds via inactive monomeric intermediates. European Biophysics Journal, 2010, 39(12):1581-1588.
[34] Michaud D, Seye A, Driouich A, et al. Purification and partial characterization of an acid β-fructosidase from sweet-pepper (Capsicum annuum L.) fruit. Planta, 1993, 191(3):308-315.
[35] Levitskaya S V, Yunusov T S. A study of the lectins of Datura innoxia seeds Ⅱ. deglycosylation with trifluoromethane sulfonic acid. Chemistry of Natural Compounds, 1995, 31(1):129-133.
[36] Douglass J F, Jaya N N, Vedvick T S, et al. Chemical deglycosylation can induce methylation, succinimide formation, and isomerization. Journal of Protein Chemistry, 2001, 20(7):571-576.
[37] Szabo Z, Guttman A, Karger B L. Rapid release of N-linked glycans from Glycoproteins by pressure-cycling technology. Analytical Chemistry, 2010, 82(6):2588-2593.
[38] Ying C, Chen Y, Yu C. Fast and Efficient non-reduced Lys-C digest using pressure cycling technology for antibody disulfide mapping by LC-MS. Journal of Pharmaceutical and Biomedical Analysis, 2016, 129:203-209.
[39] Prater B D, Connelly H M, Qin Q, et al. High-throughput immunoglobulin G N -glycan characterization using rapid resolution reverse-phase chromatography tandem mass spectrometry. Analytical Biochemistry, 2009, 385(1):69-79.
[40] Frisch E, Schwedler C, Kaup M, et al. Endo-β-N -acetylglucosaminidase H de-N-glycosylation in a domestic microwave oven:Application to biomarker discovery. Analytical Biochemistry, 2013, 433(1):65-69.
[41] Wendy N, Arellano F, Arnott D, et al. Rapid removal of N-linked oligosaccharides using microwave assisted enzyme catalyzed deglycosylation. International Journal of Mass Spectrometry, 2007, 259(1-3):117-123.
[42] Vesper H W, Mi L, Enada A, et al. Assessment of microwave-assisted enzymatic digestion by measuring glycated hemoglobin A1c by mass spectrometry. Rapid Communications in Mass Spectrometry, 2005, 19(19):2865-2870.
[43] Lin S S, Wu C H, Sun M C, et al. Microwave-assisted enzyme-catalyzed reactions in various solvent systems. Journal of the American Society for Mass Spectrometry, 2005, 16(4):581-588.
[44] Szigeti M, Bondar J, Gjerde D, et al. Rapid N -glycan release from glycoproteins using immobilized PNGase F microcolumns. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, 2016,1032:139-143.
[45] Krenkova J, Lacher N A, Svec F. Multidimensional system enabling deglycosylation of proteins using a capillary reactor with peptide-N-glycosidase F immobilized on a porous polymer monolith and hydrophilic interaction liquid chromatography-mass spectrometry of glycans. Journal of Chromatography A, 2009, 1216(15):3252-3259.
[46] Krenkova J, Szekrenyes A, Keresztessy Z, et al. Oriented immobilization of peptide-N-glycosidase F on a monolithic support for glycosylation analysis. Journal of Chromatography A, 2013, 1322(24):54-61.
[47] Agrawal P K. NMR Spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry, 1992, 31(10):3307-3330.
[48] Mcalister M S, Davis B, Pfuhl M, et al. NMR analysis of the N-terminal SRCR domain of human CD5:Engineering of a glycoprotein for superior characteristics in NMR experiments. Protein Engineering, 1998, 11(10):847-853.
[49] Westerholm-Parvinen A, Selinheimo E, Boer H, et al. Expression of the Trichoderma reesei, tyrosinase 2 in Pichia pastoris:Isotopic labeling and physicochemical characterization. Protein Expression & Purification, 2007, 55(1):147-158.
[50] Rooijen J J M V, Jeschke U, Kamerling J P, et al. Expression of N-linked sialyl Le(x) determinants and O-glycans in the carbohydrate moiety of human amniotic fluid transferrin during pregnancy.. Glycobiology, 1998, 8(11):1053-1064.
[51] Merry A H, Neville D C A, Royle L, et al. Recovery of intact 2-aminobenzamide-labeled O-glycans released from glycoproteins by hydrazinolysis. Analytical Biochemistry, 2002, 304(1):91-99.
[52] Yabu M, Korekane H, Miyamoto Y. Precise structural analysis of O-linked oligosaccharides in human serum.. Glycobiology, 2014, 24(6):542-553.
[53] Harvey D J, Royle L, Radcliffe C M, et al. Structural and quantitative analysis of N-linked glycans by matrix-assisted laser desorption ionization and negative ion nanospray mass spectrometry.. Analytical Biochemistry, 2008, 376(1):44-60.
[54] Morelle W, Michalski J C. Analysis of protein glycosylation by mass spectrometry. Nature Protocol, 2007, 2(7):1585-1602.
[55] Cio?czyk-Wierzbicka D, Amoresano A, Casbarra A, et al. The structure of the oligosaccharides of N-cadherin from human melanoma cell lines.. Glycoconjugate Journal, 2004, 20(7-8):483-492.
[56] Bunkenborg J, Hägglund P, Jensen O N. Modification-Specific Proteomic Analysis of Glycoproteins in Human Body Fluids by Mass Spectrometry. Proteomics of Human Body Fluids. New York:Humana Press, 2006:107-128.
[57] Hsieh J F, Chen S T. Comparative studies on the analysis of glycoproteins and lipopolysaccharides by the gel-based microchip and SDS-PAGE. Biomicrofluidics, 2007, 1(1):49-55.
[58] Sangadala S, Kim D, Brewer J M, et al. Subunit structure of deglycosylated human and swine trachea and Cowper's gland mucin glycoproteins. Molecular & Cellular Biochemistry, 1991, 102(1):71-93.
[59] Bhattacharyya S N, Sr E J, Manna B. Deglycosylation of neutral and acidic human colonic mucin.. Inflammation, 1990, 14(1):93-107.
[60] Martínez-Pla J J, Martín-Biosca Y, Sagrado S, et al. Chiral separation of bupivacaine enantiomers by capillary electrophoresis partial-filling technique with human serum albumin as chiral selector. Journal of Chromatography A, 2004, 1048(1):111-118.
[61] Ma S, Lau W, Keck R G, et al. Capillary electrophoresis of carbohydrates derivatized with fluorophor. Methods in Molecular Biology, 2005, 308:397-409.
[62] Nakano M,Kakehi K, Taniguchi N,et al.Capillary Electrophoresis and Capillary Electrophoresis-Mass Spectrometry for Structural Analysis of N -glycans Derived from Glycoproteins.Capillary Electrophoresis of Carbohydrates. New York:Humana Press, 2011:205-235.
[63] Litvinenko V I, Makarov V A. The alkaline hydrolysis of flavonoid glycosides. Chemistry of Natural Compounds, 1969, 5(5):305-306.
[64] Park H R, Ghafoor K, Lee D, et al. Beta-glycosidase-assisted bioconversion of ginsenosides in purified crude saponin and extracts from red ginseng (Panax ginseng C. A. Meyer). Food Science and Biotechnology, 2013, 22(6):1629-1638.

[1] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[2] LIN Yan-mei,LUO Xiang,LI Rui-jie,QIN Xiu-lin,FENG Jia-xun. Probing the Role of N-glycosylation on the Catalytic Domain in the Activity and Secretion of Fungal Cellobiohydrolase[J]. China Biotechnology, 2021, 41(4): 18-29.
[3] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[4] CHEN Xin-yi,LIU Hu,DAI Da-zhang,LI Chun. Strategies to Improve Crystallizability of Glycosylated Enzyme[J]. China Biotechnology, 2020, 40(3): 154-162.
[5] QI Jia-long, GAO Rui-yu, JIN Shu-mei, GAO Fu-lan, YANG Xu, MA Yan-bing, LIU Cun-bao. Expression and Identification of Varicella-Zoster Virus Glycoprotein E and Immunogenicity Assay[J]. China Biotechnology, 2019, 39(8): 17-24.
[6] JIANG Yi-fan,JIA Yu,Wang Long,WANG Zhi-ming. The Glycosylation Design and Control of Monoclonal Antibody by Cell Culture[J]. China Biotechnology, 2019, 39(8): 95-103.
[7] Ming-ying LI,Ren-jun WANG,Fun ZHANG,Yan CHI. The Prokaryotic Expression and Activity Analysis of the Fifth Domain of β2GPⅠ and Its Mutants or Short Peptide Fragments[J]. China Biotechnology, 2018, 38(8): 1-9.
[8] Qing-meng LI,Sheng-tao LI,Ning WANG,Xiao-dong GAO. Expression, Purification and Activity Assay of Yeast α-1,2 Mannosyltransferase Alg11[J]. China Biotechnology, 2018, 38(6): 26-33.
[9] Xiao-chen LIU,Hu LIU,Liang ZHANG,Chun LI. Enzymatic Glycosylation and Its Function in Metabolic Process of Cells[J]. China Biotechnology, 2018, 38(1): 69-77.
[10] HUANG Jia-hui, WANG Cai-kun, QIN Jin-hong, CHEN Long-guan, HUANG Yun-na, XIE Qiu-ling. The Impact of N-glycosylation on TNFR-Fc Fusion Protein Conformation Stability and Bioactivity[J]. China Biotechnology, 2016, 36(5): 12-19.
[11] ZHOU Ting-ting, PAN Chuan-yong, ZHANG Jian-peng, JIN Hui-ying. The Research of the Glycosylation of Sodium Channel β4 Subunit[J]. China Biotechnology, 2014, 34(7): 10-16.
[12] ZHAO Feng, ZHANG Yi-jun, RAN Yan-hong, WANG Xing-yong, YE Qian-jun, LI Hong-jian. Analysis of rhIL-12 Disulfide Bond And N-glycosylation Sites and C-terminal Amino Acid Sequence[J]. China Biotechnology, 2014, 34(5): 39-53.
[13] MAO Hong-yan, MA Zheng-hai. Expression, Purification of Recombinant Herpes Simplex Virus 1 Glycoprotein D in E.coli and Identification of Its Immune Activity[J]. China Biotechnology, 2014, 34(11): 54-59.
[14] GAO Guang-wei, LI Gui-lin, HUANG Jia-yu, LI Da-wei. Study of the Effects of A and C-Domain Glycosylation Sites on the Secretion and Activity of Recombinant Factor Ⅷ[J]. China Biotechnology, 2014, 34(10): 1-7.
[15] XIE Chun-fang, LI Yu-feng, LIU Da-ling, YAO Dong-sheng. The Stability Reconstruction of β-mannanase with N-glycosylation Modification[J]. China Biotechnology, 2013, 33(12): 79-85.