Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (1): 69-77    DOI: 10.13523/j.cb.20180109
Orginal Article     
Enzymatic Glycosylation and Its Function in Metabolic Process of Cells
Xiao-chen LIU,Hu LIU,Liang ZHANG,Chun LI()
Institute for Biotransformation and Synthetic Biosystem, Department of Biological Engineering, Beijing Institute of Technology, Beijing 100081,China
Download: HTML   PDF(1045KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The cell viability and functions are finely regulated through various biochemical modification occurred in the metabolism process. Enzymatic glycosylation is a common molecular modification in metabolic regulation and has an important impact on maintaining and regulating cells functions. Glycosyltransferases are enzymes that catalyze the transfer glycosyl moieties from activated donor to a wide and diverse range of acceptor molecules. The glycosylation of the acceptor molecules lead to changes of their intracellular properties such as stability, solubility and regional localization, and thus played important roles in many bioprocesses including cell cycles, signal transduction, protein expression, resistance responses, and clearance of pollutants. The classification, naming and catalytic mechanism of glycosyltransferase superfamily are briefly introduced. Then the glycosylation of protein and small molecule compounds and their functions in metabolic processes are reviewed, when the glycoside was transferred to intracellular biomolecule proteins and small molecule compounds. At last,the application prospects of glycosyltransferases and glycosylation reactions in the fields of human health pharmaceutical products, industrial catalysis, food and agriculture are looked forward.



Key wordsCell      Metabolic process      Enzyme      Glycosylation reaction      Protein      Small molecule metabolites     
Received: 05 September 2017      Published: 31 January 2018
ZTFLH:  Q53  
Cite this article:

Xiao-chen LIU,Hu LIU,Liang ZHANG,Chun LI. Enzymatic Glycosylation and Its Function in Metabolic Process of Cells. China Biotechnology, 2018, 38(1): 69-77.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180109     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I1/69

Fig.1 Naming of UGT familiesUGT1A3 is divided into four parts a: “UGT” on behalf of uridine diphosphate glycosyltransferase; b: “1” represents a UGT family; c: “A” on behalf of the subfamily; d: “3” represents a particular glycosyltransferase in the subfamily
家族物种
1~8哺乳动物
9~27无脊椎动物
31~50昆虫
51~70真菌
71~100植物
101~200细菌
201为昆虫类的节肢动物
Table 1 Biological species in different UGT families
受体分子细胞代谢过程的影响实 例参考文献
蛋白质分子维持蛋白质正常功能转运蛋白(hTPPT) N-糖基化异常丧失了其对硫胺素焦磷酸的转运功能[9]
蛋白质分子维持细胞结构稳定细菌细胞膜和细胞外区域的蛋白糖基化水平下降抑制细菌的生长[10]
蛋白质分子调节基因转录与表达蛋白质SCAP发生糖基化修饰后激活脂肪合成基因的表达[11]
蛋白质分子调节细胞周期周期调控蛋白c-Myc糖基化后可以促进细胞周期进程[12]
蛋白质分子参与信号转导细胞内 β-catenin 蛋白糖基化最终导致 Wnt/β-catenin 途径使信号通路关闭[13]
小分子化合物消除小分子化合物细胞毒性对棉子酚进行糖基化修饰的作用会消除棉子酚对昆虫细胞的毒性[14]
小分子化合物参与胁迫应答反应对小分子花青素的糖基化修饰作用会显著增强植物对干旱和盐胁迫的耐受性[15]
小分子化合物调节激素平衡拟南芥中通过糖基转移作用调节脱落酸浓度,维持其在细胞中的内稳态[16]
Table 2 Effect of glycosylation on cell metabolism process
Fig.2 Protein post-translation modifications1: Protein translation process; 2: Protein O glycosylation process, mainly in the cytoplasm and nucleus; 3: Protein N glycosylation process, mainly in the endoplasmic reticulum; 4: Protein other post-translational modification effect
Fig.3 Transporter protein glycosylation maintaining its normal function1: Transporter protein unglycosylated failed in cell membrane localization; 2: Transporter protein unglycosylated cannot maintain its normal function although localized in cell membrane; 3: Mature transporter protein by glycosylated modification can be correctly positioned to the cell membrane and maintain its normal function
Fig.4 Protein glycosylation involved in gene transcription and translation
Fig.5 Protein glycosylation regulating cell cycle
Fig.6 β-catenin glycosylation involved in the transduction of Wnt / β-catenin signaling pathway
Fig.7 Small molecule metabolites glycosylation reaction and its function
[1]   De B F, Maertens J, Beauprez J, et al.Biotechnological advances in UDP-sugar based glycosylation of small molecules. Biotechnology Advances, 2015, 33(2): 288-302.
doi: 10.1016/j.biotechadv.2015.02.005 pmid: 25698505
[2]   Dennis J W, Granovsky M, Warren C E.Protein glycosylation in development and disease. Bioessays, 1999, 21(5): 412-421.
doi: 10.1002/(SICI)1521-1878(199905)21:53.0.CO;2-5 pmid: 10376012
[3]   Tiwari P, Sangwan R S, Sangwan N S.Plant secondary metabolism linked glycosyltransferases: An update on expanding knowledge and scopes. Biotechnology Advances, 2016, 34(5): 714-739.
doi: 10.1016/j.biotechadv.2016.03.006 pmid: 27131396
[4]   Ohtsubo K, Marth J D.Glycosylation in cellular mechanisms of health and disease. Cell, 2006, 126(5): 855-867.
doi: 10.1016/j.cell.2006.08.019 pmid: 16959566
[5]   Campbell J A, Davies G J, Bulone V, et al.A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochemical Journal, 1997, 326(3): 929-939.
doi: 10.1006/abbi.1997.0277 pmid: 9334165
[6]   Coutinho P M, Deleury E, Davies G J, et al.An evolving hierarchical family classification for glycosyltransferases. Journal of Molecular Biology, 2003, 328(2): 307-317.
doi: 10.1002/ca.10202 pmid: 12691742
[7]   Bock K W. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution. Biochemical Pharmacology, 2016, 99: 11-17.
doi: 10.1016/j.bcp.2015.10.001 pmid: 26453144
[8]   Liang D M, Liu J H, Wu H, et al.Glycosyltransferases: mechanisms and applications in natural product development. Chemical Society Reviews, 2015, 44(22): 8350-8374.
doi: 10.1039/c5cs00600g
[9]   Nabokina S M, Subramanian V S, Said H M.The human colonic thiamine pyrophosphate transporter (hTPPT) is a glycoprotein and N-linked glycosylation is important for its function. Biochimica Et Biophysica Acta-Biomembranes, 2016, 1858(4): 866-871.
[10]   Yu L Y, He H B, Hu Z F, et al.Comprehensive quantification of N-glycoproteome in Fusarium graminearum reveals intensive glycosylation changes against fungicide. Journal of Proteomics, 2016, 142: 82-90.
doi: 10.1016/j.jprot.2016.05.011 pmid: 27180282
[11]   Cheng C M, Ru P, Geng F, et al.Glucose-mediated N-glycosylation of SCAP is essential for SREBP-1 activation and tumor growth. Cancer Cell, 2015, 28(5): 569-581.
doi: 10.1016/j.ccell.2015.09.021 pmid: 4643405
[12]   Swamy M, Pathak S, Grzes K M, et al.Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nature Immunology, 2016, 17(6): 712-720.
doi: 10.1038/ni.3439 pmid: 27111141
[13]   Chen Y, Jin L, Xue B, et al.NRAGE induces beta-catenin/Arm O-GlcNAcylation and negatively regulates Wnt signaling. Biochemical and Biophysical Research Communications, 2017, 487(2): 433-437.
doi: 10.1016/j.bbrc.2017.04.080
[14]   Krempl C, Sporer T, Reichelt M, et al.Potential detoxification of gossypol by UDP-glycosyltransferases in the two Heliothine moth species Helicoverpa armigera and Heliothis virescens. Insect Biochemistry and Molecular Biology, 2016, 71: 49-57.
doi: 10.1016/j.ibmb.2016.02.005 pmid: 26873292
[15]   Konig S, Feussner K, Kaever A, et al.Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. New Phytologist, 2014, 202(3): 823-837.
doi: 10.1111/nph.12709 pmid: 24483326
[16]   Liu Z, Yan J P, Li D K, et al.UDP-glucosyltransferase71C5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis. Plant Physiology, 2015, 167(4): 1659-U846.
doi: 10.1104/pp.15.00053 pmid: 25713337
[17]   Wiederschain G Y.Glycobiology: Progress, problems, and perspectives. Biochemistry-Moscow, 2013, 78(7): 679-696.
doi: 10.1134/S0006297913070018 pmid: 24010832
[18]   Bond M R, Hanover J A.A little sugar goes a long way: The cell biology of O-GlcNAc. Journal of Cell Biology, 2015, 208(7): 869-880.
doi: 10.1083/jcb.201501101 pmid: 25825515
[19]   Van D S, Rudd P M, Dwek R A, et al.Concepts and principles of O-linked glycosylation. Critical Reviews in Biochemistry and Molecular Biology, 1998, 33(3): 151-208.
doi: 10.1080/10409239891204198 pmid: 9673446
[20]   Zhang X Y, Wang Y Z.Glycosylation quality control by the golgi structure. Journal of Molecular Biology, 2016, 428(16): 3183-3193.
doi: 10.1016/j.jmb.2016.02.030 pmid: 26956395
[21]   Zhang X L.Roles of glycans and glycopeptides in immune system and immune-related diseases. Current Medicinal Chemistry, 2006, 13(10): 1141-1147.
doi: 10.2174/092986706776360897 pmid: 16719775
[22]   Takeuchi H, Haltiwanger R S.Role of glycosylation of Notch in development. Seminars in Cell & Developmental Biology, 2010, 21(6): 638-645.
doi: 10.1016/j.semcdb.2010.03.003 pmid: 2898917
[23]   Bowles D, Isayenkova J, Lim E K, et al.Glycosyltransferases: managers of small molecules. Current Opinion in Plant Biology, 2005, 8(3): 254-263.
doi: 10.1016/j.pbi.2005.03.007 pmid: 15860422
[24]   Rai A, Umashankar S, Rai M, et al.Coordinate regulation of metabolite glycosylation and stress hormone biosynthesis by TT8 in Arabidopsis. Plant Physiology, 2016, 171(4): 2499-2515.
doi: 10.1104/pp.16.00421 pmid: 27432888
[25]   Dima O, Morreel K, Vanholme B, et al.Small glycosylated lignin oligomers are stored in Arabidopsis leaf vacuoles. Plant Cell, 2015, 27(3): 695-710.
doi: 10.1105/tpc.114.134643 pmid: 25700483
[26]   Maag D, Dalvit C, Thevenet D, et al.3-beta-D-glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc) is an insect detoxification product of maize 1,4-benzoxazin-3-ones. Phytochemistry, 2014, 102(8): 97-105.
doi: 10.1016/j.phytochem.2014.03.018 pmid: 24713572
[27]   Gwak H, Kim S, Dhanasekaran D N, et al.Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells. Cancer Letters, 2016, 371(2): 347-353.
doi: 10.1016/j.canlet.2015.11.032
[28]   Lauf P K, Adragna N C.K-CI cotransport: Properties and molecular mechanism. Cellular Physiology and Biochemistry, 2000, 10(5-6): 341-354.
doi: 10.1159/000016357 pmid: 11125215
[29]   Weng T Y, Chiu W T, Liu H S, et al.Glycosylation regulates the function and membrane localization of KCC4. Biochimica Et Biophysica Acta-Molecular Cell Research, 2013, 1833(5): 1133-1146.
[30]   Chen P H, Smith T J, Wu J, et al. Glycosylation of KEAP1 links nutrient sensing to redox stress signaling. The EMBO Journal, 2017,36(15):2233-2250.
[31]   WellS L, Vosseller K, Hart G W. Glycosylation of nucleocytoplasmic proteins: Signal transduction and O-GlcNAc. Science, 2001, 291(5512): 2376-2378.
doi: 10.1126/science.1058714 pmid: 11269319
[32]   Barron C C, Bilan P J, Tsakiridis T, et al.Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism-Clinical and Experimental, 2016, 65(2): 124-139.
doi: 10.1016/j.metabol.2015.10.007 pmid: 26773935
[33]   Preston G C, Sinclair L V, Kaskar A, et al.Single cell tuning of Myc expression by antigen receptor signal strength and interleukin-2 in T lymphocytes. Embo Journal, 2015, 34(15): 2008-2024.
doi: 10.15252/embj.201490252 pmid: 4551349
[34]   Tan L, Showalter A M, Egelund J, et al. Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans. Frontiers in Plant Science, 2012, 3(140):1-10.
[35]   Basu D, Tian L, Debrosse T, et al.Glycosylation of a fasciclin-like arabinogalactan-protein (SOS5) mediates root growth and seed mucilage adherence via a cell wall receptor-like kinase (FEI1/FEI2) pathway in Arabidopsis. PLoS One, 2016, 11(1): e0145092.
[36]   Tan F Y Y, Tang C M, Exley R M. Sugar coating: bacterial protein glycosylation and host-microbe interactions. Trends in Biochemical Sciences, 2015, 40(7): 342-350.
doi: 10.1016/j.tibs.2015.03.016 pmid: 25936979
[37]   Yuan J S, Tranel P J, Stewart C N.Non-target-site herbicide resistance: a family business. Trends in Plant Science, 2007, 12(1): 6-13.
doi: 10.1016/j.tplants.2006.11.001
[38]   Poppenberger B, Berthiller F, Lucyshyn D, et al.Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry, 2003, 278(48): 47905-47914.
doi: 10.1074/jbc.M307552200 pmid: 12970342
[39]   Lin J S, Huang X X, Li Q, et al.UDP-glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification in Arabidopsis thaliana. Plant Journal, 2016, 88(1): 26-42.
doi: 10.1111/tpj.13229 pmid: 27273756
[40]   Barros J, Serk H, Granlund I, et al.The cell biology of lignification in higher plants. Annals of Botany, 2015, 115(7): 1053-1074.
doi: 10.1093/aob/mcv046 pmid: 4648457
[41]   Saema S, Rahman L U, Singh R, et al.Ectopic overexpression of WsSGTL1, a sterol glucosyltransferase gene in Withania somnifera, promotes growth, enhances glycowithanolide and provides tolerance to abiotic and biotic stresses. Plant Cell Reports, 2016, 35(1): 195-211.
doi: 10.1007/s00299-015-1879-5
[42]   Mishra M K, Chaturvedi P, Singh R, et al.Overexpression of WsSGTL1 gene of withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants. PLoS One, 2013, 8(4): e63064.
doi: 10.1371/journal.pone.0063064 pmid: 23646175
[43]   Li P, Li Y J, Zhang F J, et al.The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant Journal, 2017, 89(1): 85-103.
doi: 10.1111/tpj.13324 pmid: 27599367
[44]   Morant A V, Jorgensen K, Jorgensen C, et al.beta-glucosidases as detonators of plant chemical defense. Phytochemistry, 2008, 69(9): 1795-1813.
doi: 10.1016/j.phytochem.2008.03.006 pmid: 18472115
[45]   Ostrowski M, Jakubowska A.Udp-glycosyltransferases of plant hormones. Postepy Biologii Komorki, 2013, 40(1): 141-160.
doi: 10.2478/acb-2014-0003
[46]   Jin S H, Ma X M, Han P, et al.UGT74D1 Is a novel auxin glycosyltransferase from Arabidopsis thaliana. PLoS One, 2013, 8(4): e61705.
doi: 10.1371/journal.pone.0061705 pmid: 23613909
[47]   Song C K, Hong X T, Zhao S, et al.Glucosylation of 4-hydroxy-2,5-dimethyl-3(2H)-furanone, the key strawberry flavor compound in strawberry fruit. Plant Physiology, 2016, 171(1): 139-151.
doi: 10.1104/pp.16.00226 pmid: 26993618
[48]   Jaakola L.New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 2013, 18(9): 477-483.
doi: 10.1016/j.tplants.2013.06.003 pmid: 23870661
[49]   Miyoshi E, Kamada Y.Application of glycoscience to the early detection of pancreatic cancer. Cancer Science, 2016, 107(10): 1357-1362.
doi: 10.1111/cas.13011 pmid: 27418030
[50]   Zuegg J, Muldoon C, Adamson G, et al.Carbohydrate scaffolds as glycosyltransferase inhibitors with in vivo antibacterial activity. Nature Communications, 2015, 6: 1-11.
doi: 10.1038/ncomms8719 pmid: 4530474
[51]   Mullard A.Can next-generation antibodies offset biosimilar competition. Nature Reviews Drug Discovery, 2012, 11(6): 426-428.
doi: 10.1038/nrd3749 pmid: 22653202
[52]   贺真蛟, 佟晨瑶, 耿放, 等. 糖基化修饰对IgG/IgY结构和功能特性的影响. 中国食品学报, 2017, 17(4): 174-181.
[52]   He Z J, Tong C Y, Geng F, et al.The effects of glycosylation on the structure and functional properties of IgG/IgY. Journal of Chinese Institute of Food Science and Technology, 2017, 17(4): 174-181.
[53]   张芳, 许之珏, 徐颖姣, 等. IgG糖基化与疾病相关性研究进展. 生命科学, 2017, 29(4): 319-330.
[53]   Zhang F, Xu Z J, Xu Y J, et al.The glycosylation of immunoglobulin G and its alterations in diseases. Chinese Bulletin of Life Sciences, 2017, 29(4): 319-330.
[54]   Huang G, Lv M, Hu J, et al.Glycosylation and activities of natural products. Mini-Reviews in Medicinal Chemistry, 2016, 16(12): 1013-1016.
[55]   冯旭东,吕波,李春. 酶分子稳定性改造研究进展. 化工学报, 2016,67(1): 277-284.
doi: 10.11949/j.issn.0438-1157.20151025
[55]   Feng X D, Lu B, Li C.Advances in enzyme stability modification. CIESC Journal, 2016, 67(1): 277-284.
doi: 10.11949/j.issn.0438-1157.20151025
[56]   汪胡芳, 莫丽英, 王杏利, 等. 糖基化改性甜菊苷、橙皮苷及芦丁苷作为新型药物载体的研究与应用. 中国实验方剂学杂志, 2017, 23(23): 220-227.
[56]   Wang H F, Mo L Y, Wang X L, et al. Research advances in application of transglycosylated stevioside, hesperidin and rutin as new drug carrier materials. Chinese Journal of Experimental Traditional Medical Formulae, 2017, 23(23): 220-227.
[1] TAN Pei-lin,ZHANG Ying,ZHANG Jun,GAO Xiao,WANG Shu-kun,HOU Lin,YUAN Zeng-qiang. Role and Mechanism of Metformin in Oligodendrocyte Precursor Cell Differentiation[J]. China Biotechnology, 2021, 41(9): 1-9.
[2] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[3] YANG Liu,MOU Hao,XU Guo-yang,BAI Yun-chuan,YU Yuan-di. Analysis of the Difference in Color Development of Cultured Goatpox Virus Common Cells in X-gal Environment[J]. China Biotechnology, 2021, 41(9): 48-54.
[4] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[5] QIAN Yu,DING Xiao-yu,LIU Zhi-qiang,YUAN Zeng-qiang. An Efficient Monoclonal Establishment Method of Genetically Modified Human Pluripotent Stem Cells[J]. China Biotechnology, 2021, 41(8): 33-41.
[6] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[7] YUAN Bo-xin,WU Hao,YAN Chun-xiao,LU Juan-e,WEI Zhen-ping,QIAO Jian-jun,RUAN Hai-hua. Progress of Effector Proteins of Pathogenic Bacteria Invading Host Cell Nucleus[J]. China Biotechnology, 2021, 41(7): 81-90.
[8] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[9] FENG Zhao,LI Jiang-hao,WANG Jia-hua. Functional Analysis of RpRPL22, a Ribosomal Protein Homologous Gene, in the Symbiotic Nodulation Process of Robinia Pseudoacacia[J]. China Biotechnology, 2021, 41(7): 10-21.
[10] CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen. Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles[J]. China Biotechnology, 2021, 41(7): 42-49.
[11] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[12] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[13] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.
[14] TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells[J]. China Biotechnology, 2021, 41(5): 1-7.
[15] CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression[J]. China Biotechnology, 2021, 41(5): 8-16.