Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (5): 37-45    DOI: 10.13523/j.cb.2201019
    
Development and Biological Activity Analysis of PSMA Specific Mutivalent Nanobodies
BAO Yi-kai,HONG Hao-fei**(),SHI Jie,ZHOU Zhi-fang,WU Zhi-meng**()
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(4151KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To express PSMA (prostate-specific membrane antigen) specific multivalent nanobodies in the prokaryotic system, and preliminarily evaluate their biological properties. Methods: The multivalent nanobody expression vectors were constructed by the Bglbrick method, and then transferred into E.coli Rosetta(DE3) for protein production. SDS-PAGE and Western blot assays were performed to identify the purified nanobody samples. BCA (bicinchoninic acid assay) kits were used for expression yield determination. The specific binding affinities were evaluated by immunofluorescence and flow cytometry. The binding EC50 values were detected by cell-based ELISA. The endocytosis efficiency was investigated via flow cytometry. Results: Recombinant E. coli strains for PSMA specific monovalent, bivalent, trivalent and tetravalent nanobodies production were successfully constructed, respectively. Fermentation results showed that all four kinds of nanobodies could be expressed as soluble proteins with high yields at shake flask level, among which the bivalent nanobody presented the highest expression yield [(259.14±23.56) mg/L], whereas the monovalent type lowest [(100.58±6.27) mg/L]. In the subsequent cell binding assays, results indicated that all four nanobody samples could specifically recognize and bind to PSMA-positive tumor cells. Notably, compared with monovalent nanobody, the binding affinity of bivalent, trivalent and tetravalent nanobodies were improved approximately 3.32-, 2.29- and 2.03-fold, respectively. Finally, the endocytosis experiments were conducted and the results suggested that all four kinds of nanobodies could be efficiently endocytosed by PSMA-positive tumor cells and the uptake rates in 0.5 h were all above 80%. Conclusion: PSMA specific multivalent nanobodies, especially PSMA specific bivalent nanobody, had higher expression yield and better binding affinity than monovalent nanobody. Meanwhile, they remained the same uptake level with monovalent nanobody. In this context, PSMA specific multivalent nanobodies could be a potential class of candidates for the development of PSMA-based therapies.



Key wordsProstate cancer      PSMA      Multivalent nanobodies     
Received: 15 January 2022      Published: 17 June 2022
ZTFLH:  Q816  
Corresponding Authors: Hao-fei HONG,Zhi-meng WU     E-mail: haofei@jiangnan.edu.cn;zwu@jiangnan.edu.cn
Cite this article:

BAO Yi-kai,HONG Hao-fei,SHI Jie,ZHOU Zhi-fang,WU Zhi-meng. Development and Biological Activity Analysis of PSMA Specific Mutivalent Nanobodies. China Biotechnology, 2022, 42(5): 37-45.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2201019     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I5/37

Fig.1 Design of plasmids for multivalent nanobodies expression
Fig.2 Construction and identification of multivalent nanobody expression strains (a) PCR amplification of Bglbricks. M: DNA Marker; 1: jG; 2: jM (b) Colony PCR of constructed strains. M: DNA Marker; 1-4: JM109 strains harboring pET22b-j01, pET22b-j02, pET22b-j03 and pET22b-j04, respectively
Primer name Primer sequence (5'→3') Endonuclease
F GGAATTCCATATGGGAAGATCTATGGAAGTGCAGCTGGTTGAAAGTG NdeⅠ, Bgl
R1 CCGCTCGAGCGGTTACGCGGATCCGCCGCCGCCGCTACCACCACCACCACTGCTCACGGTAACCTGG XhoⅠ, BamHⅠ
R2 CCGCTCGAGGCCACCGGTTTC Xho
22B CCCAGTAGTAGGTTGAGGC
T7ter GCTAGTTATTGCTCAGCGG
Table 1 Primers used in this study
Fig.3 Expression identification and yield analysis of multivalent nanobodies (a) SDS-PAGE analysis of nanobodies. M: Protein ladder; 1: J01; 2: J02; 3: J03; 4: J04 (b) Myc tag-based Western blot analysis of nanobodies. M: Protein ladder; 1: J01; 2: J02; 3: J03; 4: J04 (c) 6×His tag-based Western blot analysis of nanobodies. M: Protein ladder; 1: J01; 2: J02; 3: J03; 4: J04 (d) The expression yield of nanobodies
Fig.4 The binding affinity evaluation of multivalent nanobodies (a) Immunofluorescence analysis of LNCaP and PC-3 cells treated with PBS or nanobody samples (J01, J02, J03 or J04). Scale bar: 50 μm (b) Flow cytometry and the corresponding MFIs of LNCaP and PC-3 cells treated with PBS or nanobody samples (J01, J02, J03 or J04). **** : P<0.000 1 (c) Cell-based ELISA analysis of LNCaP cells treated with different concentrations of nanobody samples (J01, J02, J03 or J04)
Fig.5 The uptake ability of multivalent nanobodies
[1]   Wild C P, Weiderpass E, Stewart B W. World cancer report:cancer research for cancer prevention. 2020 ed. Lyon: International Agency for Research on Cancer, 2020:2 8-33: 421-429.
[2]   邓通, 蔡林, 陈征, 等. 1990年与2017年中国前列腺癌疾病负担分析. 医学新知, 2020, 30(4): 252-259.
[2]   Deng T, Cai L, Chen Z, et al. Analysis of the burden of prostate cancer in China in 1990 and 2017. New Medicine, 2020, 30(4): 252-259.
[3]   Liu X, Yu C, Bi Y, et al. Trends and age-period-cohort effect on incidence and mortality of prostate cancer from 1990 to 2017 in China. Public Health, 2019, 172: 70-80.
doi: S0033-3506(19)30140-4 pmid: 31220754
[4]   Israeli R S, Powell C T, Fair W R, et al. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Research, 1993, 53(2): 227-230.
pmid: 8417812
[5]   Sokoloff R L, Norton K C, Gasior C L, et al. A dual-monoclonal sandwich assay for prostate-specific membrane antigen: levels in tissues, seminal fluid and urine. The Prostate, 2000, 43(2): 150-157.
doi: 10.1002/(SICI)1097-0045(20000501)43:2<150::AID-PROS10>3.0.CO;2-B
[6]   Bostwick D G, Pacelli A, Blute M, et al. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma. Cancer, 1998, 82(11): 2256-2261.
pmid: 9610707
[7]   Silver D A, Pellicer I, Fair W R, et al. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clinical Cancer Research, 1997, 3(1): 81-85.
pmid: 9815541
[8]   刘冲, 陶嵘. 前列腺特异性膜抗原为靶标的放射免疫治疗进展. 肿瘤影像学, 2015, 24(3): 168-172.
[8]   Liu C, Tao R. Advances in radioimmunotherapy targeting prostate specific membrane antigen in prostate cancer. Oncoradiology, 2015, 24(3): 168-172.
[9]   焦点. PSMA在多种肿瘤中的表达分析及靶向PSMA的抗体偶联药物用于前列腺癌治疗的研究. 西安: 中国人民解放军空军军医大学, 2019.
[9]   Jiao D. Study of PSMA Expression in various tumors and treatment on prostate cancer using psma-based antibody-drug conjugate. Xian: Air Force Medical University of PLA, 2019.
[10]   Ghosh A, Heston W D W. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. Journal of Cellular Biochemistry, 2004, 91(3): 528-539.
doi: 10.1002/jcb.10661
[11]   Mir M A, Mehraj U, Sheikh B A, et al. Nanobodies: The "Magic Bullets" in therapeutics, drug delivery and diagnostics. Human Antibodies, 2020, 28(1): 29-51.
doi: 10.3233/HAB-190390
[12]   李丹, 黄鹤. 纳米抗体异源表达的研究进展. 中国生物工程杂志, 2017, 37(8): 84-95.
[12]   Li D, Huang H. Heterologous expression of nanobodies: a recent progress. China Biotechnology, 2017, 37(8): 84-95.
[13]   Fan X Z, Wang L F, Guo Y L, et al. Ultrasonic nanobubbles carrying anti-PSMA nanobody: construction and application in prostate cancer-targeted imaging. PLoS One, 2015, 10(6): e0127419.
doi: 10.1371/journal.pone.0127419
[14]   Chatalic K L S, Veldhoven-Zweistra J, de Ridder C M A, et al. SPECT/CT and PET imaging of prostate cancer xenografts using a novel anti-PSMA nanobody. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41: S319-S320.
[15]   范校周. 携载PSMA纳米抗体的超声纳米泡在靶向诊断前列腺癌中的实验研究. 重庆: 第三军医大学, 2014.
[15]   Fan X Z. Experimental study of ultrasound nanobubble coupled with anti-PSMA nanobody in the targeting diagnosis of prostate cancer. Chongqing: Third Military Medical University, 2014.
[16]   Rahbarizadeh F, Ahmadvand D, Sharifzadeh Z. Nanobody;an old concept and new vehicle for immunotargeting. Immunological Investigations, 2011, 40(3): 299-338.
doi: 10.3109/08820139.2010.542228 pmid: 21244216
[17]   王长江, 曲光刚, 武曰星, 等. 猪圆环病毒2型Cap蛋白特异性双价纳米抗体原核表达及活性鉴定. 动物医学进展, 2021, 42(3): 7-11.
[17]   Wang C J, Qu G G, Wu Y X, et al. Expression and activity identification of mono-specific anti-PCV 2 cap bivalent nanobody. Progress in Veterinary Medicine, 2021, 42(3): 7-11.
[18]   张俊毅. 赭曲霉毒素A五价纳米抗体的表达及其免疫亲和柱的制备. 南昌: 南昌大学, 2018.
[18]   Zhang J Y. Expression of ochratoxin A pentavalent nanobody and preparation of immunoaffinity column. Nanchang: Nanchang University, 2018.
[19]   Chatalic K L S, Veldhoven-Zweistra J, Bolkestein M, et al. A novel 111In-labeled anti-prostate-specific membrane antigen nanobody for targeted SPECT/CT imaging of prostate cancer. Journal of Nuclear Medicine, 2015, 56(7): 1094-1099.
doi: 10.2967/jnumed.115.156729
[20]   Goldman E R, Broussard A, Anderson G P, et al. Bglbrick strategy for the construction of single domain antibody fusions. Heliyon, 2017, 3(12): e00474.
doi: 10.1016/j.heliyon.2017.e00474
[21]   Sodee D B, Ellis R J, Samuels M A, et al. Prostate cancer and prostate bed SPECT imaging with ProstaScint: semiquantitative correlation with prostatic biopsy results. The Prostate, 1998, 37(3): 140-148.
doi: 10.1002/(SICI)1097-0045(19981101)37:3<140::AID-PROS3>3.0.CO;2-Q
[22]   Hennrich U, Eder M. [(68) Ga]Ga-PSMA-11: the first FDA-approved 68 Ga-radiopharmaceutical for PET imaging of prostate cancer. Pharmaceuticals (Basel, Switzerland), 2021, 14(8): 713.
[23]   Rosar F, Hau F, Bartholomä M, et al. Molecular imaging and biochemical response assessment after a single cycle of [(225) Ac]Ac-PSMA-617/[(177) Lu] Lu-PSMA-617 tandem therapy in mCRPC patients who have progressed on [(177)Lu] Lu-PSMA-617 monotherapy. Theranostics, 2021, 11(9): 4050-4060.
doi: 10.7150/thno.56211
[24]   Cimadamore A, Mazzucchelli R, Lopez-Beltran A, et al. Prostate cancer in 2021: novelties in prognostic and therapeutic biomarker evaluation. Cancers, 2021, 13(14): 3471.
doi: 10.3390/cancers13143471
[25]   Miyahira A K, Soule H R. The 24th Annual Prostate Cancer Foundation scientific retreat report. The Prostate, 2018, 78(12): 867-878.
[26]   Giraudet A L, Kryza D, Hofman M, et al. PSMA targeting in metastatic castration-resistant prostate cancer: where are we and where are we going? Therapeutic Advances in Medical Oncology, 2021, 13: 17588359211053898.
[27]   穆博帅, 徐洋, 刘志博. 靶向PSMA放射性小分子药物研究进展. 同位素, 2021, 34(6): 565-580.
[27]   Mu B S, Xu Y, Liu Z B. Research progress of PSMA-targeted small molecule drugs. Journal of Isotopes, 2021, 34(6): 565-580.
[28]   Hosseindokht M, Bakherad H, Zare H. Nanobodies: a tool to open new horizons in diagnosis and treatment of prostate cancer. Cancer Cell International, 2021, 21(1): 580.
doi: 10.1186/s12935-021-02285-0 pmid: 34717636
[29]   Tykvart J, Navrátil V, Sedlák F, et al. Comparative analysis of monoclonal antibodies against prostate-specific membrane antigen (PSMA). The Prostate, 2014, 74(16): 1674-1690.
doi: 10.1002/pros.22887
[30]   Nováková Z, Foss C A, Copeland B T, et al. Novel monoclonal antibodies recognizing human prostate-specific membrane antigen (PSMA) as research and theranostic tools. The Prostate, 2017, 77(7): 749-764.
doi: 10.1002/pros.23311
[31]   Schülke N, Varlamova O A, Donovan G P, et al. The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(22): 12590-12595.
[1] ZHANG Sai,YE Ji-wei,SHEN Yuan-jing,MU Ke-fei,GUO Xin-wu. Effects of miR-324-3p Targeting GPX4 on Ferroptosis in Prostate Cancer Cells[J]. China Biotechnology, 2022, 42(1/2): 72-79.
[2] DUAN Li-mei,YANG Jin-xiao,LIU Jia-yu,ZHENG Yong-bo,WU Xiao-hou,LUO Chun-li. shPLCε Inhibits Serine/Glycine Metabolism and Proliferation of Prostate Cancer via YAP Signaling Pathway[J]. China Biotechnology, 2019, 39(11): 1-12.
[3] SHENG Bin, YANG Fan, SUN Xin-yi, CHEN Yao, LI Li, YANG Jian-yi, DU Sheng-jia, LIU Ming. Construction of the Stable Prostate Cancer Cell Lines Overexpress GPRC6A and EMT Study[J]. China Biotechnology, 2017, 37(3): 18-26.
[4] CHEN Er, OU Li-ping, TANG Min, LIU Nan-jing, WU Xiao-hou, LUO Chun-li. The Mechanisms of Panobinostat Reversing HepaCAM Gene Expression in Prostate Cancer[J]. China Biotechnology, 2016, 36(6): 9-17.