Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (8): 59-66    DOI: 10.13523/j.cb.2104019
    
Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer
YANG Wan-bin1,XU Yan1,ZHUO Shi-xuan1,WANG Xin-yi1,LI Ya-jing1,GUO Yi-fan2,ZHANG Zheng-guang1,GUO Yuan-yuan1,**()
1 School of Medicine & Holistic Integrative Medicine of Nanjing University of Chinese Medicine, Nanjing 210023, China
2 School of Pharmacy Nanjing University of Chinese Medicine, Nanjing 210023, China
Download: HTML   PDF(963KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Long non-coding RNAs (lncRNAs) are generally defined as RNA transcripts of more than 200 nucleotides in length with limited protein-coding capacity; however their functions are diverse and complex. Previous studies have demonstrated that lncRNAs are closely related to cancer development and are potential cancer regulators. lncRNAs can participate in the regulation of intracellular biological processes in different ways. It is a potential cancer regulator. Among them, lncRNAs can affect cancer progression mainly through regulating the level of epigenetic modification. Epigenetic modifications exist in the cells during the pathogenesis of cancer such as DNA modification, RNA modification, and post-translational modification of proteins including methylation, acetylation, phosphorylation, glycosylation, and ubiquitination, and the degree of abnormal modifications is different at different stages of cancer. This phenomenon will affect the biological processes of tumorigenesis. Studies have shown that lncRNAs can participate in the occurrence and development of cancer through self-modification or taking part in the epigenetic modification of other biomolecules. Therefore, the epigenetic modification lncRNAs participate in and the role of lncRNAs in epigenetic modification were reviewed. This paper explores how lncRNAs affect cancer progression through regulating the level of epigenetic modification in order to summarize and analyze the research progress and provide potential targets and biomarkers for cancer diagnosis and treatment.



Key wordslncRNA      Epigenetic modification      Cancer     
Received: 14 April 2021      Published: 31 August 2021
ZTFLH:  Q522  
Corresponding Authors: Yuan-yuan GUO     E-mail: guoyy@njucm.edu.cn
Cite this article:

YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer. China Biotechnology, 2021, 41(8): 59-66.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2104019     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I8/59

[1]   Chen S J, Li F Y, Xu D, et al. The function of RAS mutation in cancer and advances in its drug research. Current Pharmaceutical Design, 2019, 25(10):1105-1114.
doi: 10.2174/1381612825666190506122228
[2]   范源, 罗嘉, 甘麦邻, 等. 长链非编码RNA TERRA的研究进展. 中国生物工程杂志, 2018, 38(10):64-73.
[2]   Fan Y, Luo J, Gan M L, et al. The research advance of long non-coding RNA TERRA. China Biotechnology, 2018, 38(10):64-73.
[3]   Ruiz-Orera J, Messeguer X, Subirana J A, et al. Long non-coding RNAs as a source of new peptides. eLife, 2014, 3:e03523. DOI: 10.7554/eLife.03523.
doi: 10.7554/eLife.03523
[4]   Huang J Z, Chen M, Chen D, et al. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Molecular Cell, 2017, 68(1):171-184.e6.
doi: 10.1016/j.molcel.2017.09.015
[5]   万群, 刘梦瑶, 夏菁, 等. 长链非编码RNA SNHG3对人乳腺癌细胞MCF-7增殖、迁移与侵袭的影响. 中国生物工程杂志, 2019, 39(1):13-20.
[5]   Wan Q, Liu M Y, Xia J, et al. The effects of LncRNA SNHG3 on the proliferation, migration and invasion of human breast cancer MCF-7 cells. China Biotechnology, 2019, 39(1):13-20.
[6]   Kelly A D, Issa J P J. The promise of epigenetic therapy: reprogramming the cancer epigenome. Current Opinion in Genetics & Development, 2017, 42:68-77.
[7]   堵晶晶, 谭镇东, 刘辰东, 等. 长链非编码RNA的研究现状. 中国生物工程杂志, 2016, 36(9):59-74.
[7]   Du J J, Tan Z D, Liu C D, et al. Research progress of long non-coding RNAs. China Biotechnology, 2016, 36(9):59-74.
[8]   Moore L D, Le T, Fan G P. DNA methylation and its basic function. Neuropsychopharmacology, 2013, 38(1):23-38.
doi: 10.1038/npp.2012.112 pmid: 22781841
[9]   Edwards J R, Yarychkivska O, Boulard M, et al. DNA methylation and DNA methyltransferases. Epigenetics & Chromatin, 2017, 10(1):1-10.
[10]   Robert M F, Morin S, Beaulieu N, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nature Genetics, 2003, 33(1):61-65.
doi: 10.1038/ng1068
[11]   Song Y, Zhou T, Zong Y Q, et al. Arsenic inhibited cholesterol efflux of THP-1 macrophages via ROS-mediated ABCA1 hypermethylation. Toxicology, 2019, 424:152225.
doi: 10.1016/j.tox.2019.05.012
[12]   Xing X Q, Li B, Xu S L, et al. 5-Aza-2'-deoxycytidine, a DNA methylation inhibitor, attenuates hypoxic pulmonary hypertension via demethylation of the PTEN promoter. European Journal of Pharmacology, 2019, 855:227-234.
doi: S0014-2999(19)30325-5 pmid: 31085236
[13]   Liu D L, Wu K, Yang Y, et al. Long noncoding RNA ADAMTS9-AS2 suppresses the progression of esophageal cancer by mediating CDH3 promoter methylation. Molecular Carcinogenesis, 2020, 59(1):32-44.
doi: 10.1002/mc.v59.1
[14]   Kang X W, Kong F W, Huang K, et al. LncRNA MIR210HG promotes proliferation and invasion of non-small cell lung cancer by upregulating methylation of CACNA2D2 promoter via binding to DNMT1. OncoTargets and Therapy, 2019, 12:3779-3790.
doi: 10.2147/OTT
[15]   Ruscio A D, Ebralidze A K, Benoukraf T, et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 2013, 503(7476):371-376.
doi: 10.1038/nature12598
[16]   Qi D F, Li J H, Que B, et al. Long non-coding RNA DBCCR1-003 regulate the expression of DBCCR1 via DNMT1 in bladder cancer. Cancer Cell International, 2016, 16:81.
doi: 10.1186/s12935-016-0356-8
[17]   Yin Y M, Morgunova E, Jolma A, et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science, 2017, 356(6337):eaaj2239. DOI: 10.1126/science.aaj2239.
doi: 10.1126/science.aaj2239
[18]   Arab K, Karaulanov E, Musheev M, et al. GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nature Genetics, 2019, 51(2):217-223.
doi: 10.1038/s41588-018-0306-6
[19]   Zhou L Y, Ren M, Zeng T T, et al. TET2-interacting long noncoding RNA promotes active DNA demethylation of the MMP-9 promoter in diabetic wound healing. Cell Death & Disease, 2019, 10:813.
[20]   Chen Y, Lin Y, Shu Y, et al. Interaction between N(6)-methyladenosine (m(6)A) modification and noncoding RNAs in cancer. Mol Cancer, 2020, 19(1):94.
doi: 10.1186/s12943-020-01207-4 pmid: 32443966
[21]   Huang H L, Weng H Y, Chen J J. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell, 2020, 37(3):270-288.
doi: 10.1016/j.ccell.2020.02.004
[22]   Patil D P, Pickering B F, Jaffrey S R. Reading m6A in the transcriptome: m6A-binding proteins. Trends in Cell Biology, 2018, 28(2):113-127.
doi: 10.1016/j.tcb.2017.10.001
[23]   Zuo L, Su H, Zhang Q, et al. Comprehensive analysis of lncRNAs N6-methyladenosine modification in colorectal cancer. Aging, 2021, 13(3):4182-4198.
doi: 10.18632/aging.v13i3
[24]   Zuo X L, Chen Z Q, Gao W, et al. M6A-mediated upregulation of LINC00958 increases lipogenesis and Acts as a nanotherapeutic target in hepatocellular carcinoma. Journal of Hematology & Oncology, 2020, 13(1):5.
[25]   Zheng Z Q, Li Z X, Zhou G Q, et al. Long noncoding RNA FAM225A promotes nasopharyngeal carcinoma tumorigenesis and metastasis by acting as CeRNA to sponge miR-590-3p/miR-1275 and upregulate ITGB3. Cancer Research, 2019, 79(18):4612-4626.
doi: 10.1158/0008-5472.CAN-19-0799
[26]   Yang D D, Qiao J, Wang G Y, et al. N6-methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Research, 2018, 46(8):3906-3920.
doi: 10.1093/nar/gky130
[27]   Zhang S C, Zhao B S, Zhou A D, et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell, 2017, 31(4):591-606.e6.
doi: 10.1016/j.ccell.2017.02.013
[28]   Lan T, Li H, Zhang D L, et al. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Molecular Cancer, 2019, 18(1):186.
doi: 10.1186/s12943-019-1106-z
[29]   Wang Y, Lu J H, Wu Q N, et al. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Molecular Cancer, 2019, 18(1):174.
doi: 10.1186/s12943-019-1105-0 pmid: 31791342
[30]   Hsu J M, Li C W, Lai Y J, et al. Posttranslational modifications of PD-L1 and their applications in cancer therapy. Cancer Research, 2018, 78(22):6349-6353.
doi: 10.1158/0008-5472.CAN-18-1892
[31]   Poulard C, Corbo L, Le Romancer M. Protein arginine methylation/demethylation and cancer. Oncotarget, 2016, 7(41):67532-67550.
doi: 10.18632/oncotarget.v7i41
[32]   Tsai M C, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329(5992):689-693.
doi: 10.1126/science.1192002
[33]   Zhou H L, Luo G B, Wise J A, et al. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Research, 2014, 42(2):701-713.
doi: 10.1093/nar/gkt875
[34]   Jiang B, Yang B, Wang Q, et al. lncRNA PVT1 promotes hepatitis B virus-positive liver cancer progression by disturbing histone methylation on the c-Myc promoter. Oncology Reports, 2020, 43(2):718-726.
doi: 10.3892/or.2019.7444 pmid: 31894346
[35]   Yu Y, Zhang M J, Liu J, et al. Long non-coding RNA PVT1 promotes cell proliferation and migration by silencing ANGPTL4 expression in cholangiocarcinoma Molecular Therapy - Nucleic Acids, 2018, 13:503-513.
doi: 10.1016/j.omtn.2018.10.001
[36]   Song Y, Wang R, Li L W, et al. Long non-coding RNA HOTAIR mediates the switching of histone H3 lysine 27 acetylation to methylation to promote epithelial-to-mesenchymal transition in gastric cancer. International Journal of Oncology, 2019, 54(1):77-86.
doi: 10.3892/ijo.2018.4625 pmid: 30431069
[37]   Yu S X, Yang D L, Ye Y Y, et al. Long noncoding RNA actin filament-associated protein 1 antisense RNA 1 promotes malignant phenotype through binding with lysine-specific demethylase 1 and repressing HMG box-containing protein 1 in non-small-cell lung cancer. Cancer Science, 2019, 110(7):2211-2225.
doi: 10.1111/cas.2019.110.issue-7
[38]   Chen Z Y, Chen X, Lu B B, et al. Up-regulated LINC01234 promotes non-small-cell lung cancer cell metastasis by activating VAV3 and repressing BTG2 expression. Journal of Hematology & Oncology, 2020, 13(1):1-14.
[39]   Guo P P, Chen W Q, Li H Y, et al. The histone acetylation modifications of breast cancer and their therapeutic implications. Pathology & Oncology Research, 2018, 24(4):807-813.
[40]   Pan Z W, Mao W M, Bao Y J, et al. The long noncoding RNA CASC9 regulates migration and invasion in esophageal cancer. Cancer Medicine, 2016, 5(9):2442-2447.
doi: 10.1002/cam4.2016.5.issue-9
[41]   Liang Y, Chen X D, Wu Y Y, et al. LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell Death and Differentiation, 2018, 25(11):1980-1995.
doi: 10.1038/s41418-018-0084-9 pmid: 29511340
[42]   Ma H L, Chang H Y, Yang W Y, et al. A novel IFNα-induced long noncoding RNA negatively regulates immunosuppression by interrupting H3K27 acetylation in head and neck squamous cell carcinoma. Molecular Cancer, 2020, 19(1):1-16.
doi: 10.1186/s12943-019-1085-0
[43]   Wang Y, Chen W Y, Lian J Y, et al. The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-1α. Cell Death & Differentiation, 2020, 27(2):695-710.
[44]   Ding G Q, Li W, Liu J P, et al. LncRNA GHET1 activated by H3K27 acetylation promotes cell tumorigenesis through regulating ATF1 in hepatocellular carcinoma. Biomedicine & Pharmacotherapy, 2017, 94:326-331.
doi: 10.1016/j.biopha.2017.07.046
[45]   Yi T B, Zhou X Q, Sang K, et al. Activation of lncRNA lnc-SLC4A1-1 induced by H3K27 acetylation promotes the development of breast cancer via activating CXCL8 and NF-κB pathway. Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47(1):3765-3773.
doi: 10.1080/21691401.2019.1664559
[46]   Ye P, Lv X, Aizemaiti R, et al. H3K27ac-activated LINC00519 promotes lung squamous cell carcinoma progression by targeting miR-450b-5p/miR-515-5p/YAP1 axis. Cell Proliferation, 2020, 53(5):e12797.
[47]   Liu D S, Zhang H, Cong J C, et al. H3K27 acetylation-induced lncRNA EIF3J-AS1 improved proliferation and impeded apoptosis of colorectal cancer through miR-3163/YAP1 axis. Journal of Cellular Biochemistry, 2020, 121(2):1923-1933.
doi: 10.1002/jcb.v121.2
[48]   Chen F B, Qi S C, Zhang X, et al. lncRNA PLAC2 activated by H3K27 acetylation promotes cell proliferation and invasion via the activation of Wnt/β-catenin pathway in oral squamous cell carcinoma. International Journal of Oncology, 2019, 54(4):1183-1194.
[49]   Tang J M, Zhong G S, Zhang H B, et al. LncRNA DANCR upregulates PI3K/AKT signaling through activating serine phosphorylation of RXRA. Cell Death & Disease, 2018, 9:1167.
[50]   Yang Y, Zhang J P, Chen X, et al. LncRNA FTX sponges miR-215 and inhibits phosphorylation of vimentin for promoting colorectal cancer progression. Gene Therapy, 2018, 25(5):321-330.
doi: 10.1038/s41434-018-0026-7 pmid: 29925853
[51]   Faktor J, Pjechová M, Hernychová L, et al. Protein ubiquitination research in oncology. Klinicka Onkologie, 2019, 32(Suppl 3):56-64. DOI: 10.14735/amko20193s56.
doi: 10.14735/amko20193s56
[52]   Zhao B, Tsai Y C, Jin B, et al. Protein engineering in the ubiquitin system: tools for discovery and beyond. Pharmacological Reviews, 2020, 72(2):380-413.
doi: 10.1124/pr.118.015651 pmid: 32107274
[53]   Cao S Z, Wang Y Z, Li J Q, et al. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by suppressing miR-155 expression and activating FBXW7 function. American Journal of Cancer Research, 2016, 6(11):2561-2574.
[54]   Wu G Z, Cai J, Han Y, et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation, 2014, 130(17):1452-1465.
doi: 10.1161/CIRCULATIONAHA.114.011675
[55]   Zhang A, Zhao J C, Kim J, et al. LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Reports, 2015, 13(1):209-221.
doi: S2211-1247(15)00982-1 pmid: 26411689
[56]   Wani W Y, Chatham J C, Darley-Usmar V, et al. O-GlcNAcylation and neurodegeneration. Brain Research Bulletin, 2017, 133:80-87.
doi: 10.1016/j.brainresbull.2016.08.002
[57]   Girotti M R, Salatino M, Dalotto-Moreno T, et al. Sweetening the hallmarks of cancer: Galectins as multifunctional mediators of tumor progression. Journal of Experimental Medicine, 2020, 217(2). DOI: 10.1084/jem.20182041.
doi: 10.1084/jem.20182041
[58]   Pan S M, Liu Y Q, Liu Q Q, et al. HOTAIR/miR-326/FUT6 axis facilitates colorectal cancer progression through regulating fucosylation of CD44 via PI3K/AKT/mTOR pathway. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2019, 1866(5):750-760.
doi: 10.1016/j.bbamcr.2019.02.004
[59]   Hu J L, Shan Y J, Ma J, et al. LncRNA ST3Gal6-AS1/ST3Gal6 axis mediates colorectal cancer progression by regulating α-2, 3 sialylation via PI3K/Akt signaling. International Journal of Cancer, 2019, 145(2):450-460.
doi: 10.1002/ijc.v145.2
[60]   Zhao Q, Zheng K, Ma C M, et al. PTPS facilitates compartmentalized LTBP1 S-nitrosylation and promotes tumor growth under hypoxia. Molecular Cell, 2020, 77(1):95-107.e5.
doi: S1097-2765(19)30723-3 pmid: 31628042
[1] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[2] LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells[J]. China Biotechnology, 2021, 41(4): 9-17.
[3] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[4] TANG De-ping,XING Meng-jie,SONG Wen-tao,YAO Hui-hui,MAO Ai-hong. Advance of microRNA Therapeutics in Cancer and Other Diseases[J]. China Biotechnology, 2021, 41(11): 64-73.
[5] CHEN Xue-yan,ZHANG Na,CHEN Juan,YANG Yan-hong,ZHANG Ju-feng. Effect of Hsa-miR-411-3P on Gastric Cancer Cells and Related Mechanisms[J]. China Biotechnology, 2020, 40(4): 1-9.
[6] TANG Min,WAN Qun,SUN Shi-lei,HU Jing,SUN Zi-jiu,FANG Yu-ting,ZHANG Yan. The Effects of Hsa-miR-5195-3p on the Proliferation, Migration and Invasion of Human Cervical Cancer SiHa Cells[J]. China Biotechnology, 2020, 40(4): 17-24.
[7] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[8] HU Li-jun,DUAN Liang,HUANG Yi-yun,LIN Lu,HUANG Mao,CHEN Lu,PENG Qi,HU Qin,ZHANG Yan,ZHOU Lan. S100A9 Is Involved in Fusobacterium nucleatum-Induced Proliferation and Migration of Colon Cancer HCT116 and SW480 Cells[J]. China Biotechnology, 2020, 40(1-2): 84-91.
[9] FENG Xue-jiao,HOU Hai-long,YU Qiong,WANG Jun-shu. Market Analysis and Countermeasures of Cervical Cancer Vaccine in China[J]. China Biotechnology, 2020, 40(11): 96-101.
[10] Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG. Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer[J]. China Biotechnology, 2019, 39(7): 79-84.
[11] Jie XIAN,Xue QIN,You-de CAO. Numb Inhibits the Ubiquitination Degradation of p53 by HDM2 in Triple-negative Breast Cancer[J]. China Biotechnology, 2019, 39(7): 1-7.
[12] Yu-feng ZHANG,Meng-jia XIE,Shu-lei ZHOU,Ling-ling XU,Tie-jun ZHAO. Application of Cell-penetrating Peptides in Tumor Targeted Therapy and Disease Diagnosis[J]. China Biotechnology, 2019, 39(6): 48-54.
[13] Wei-bing PAN,Peng ZHU,Qi-ang ZENG,Kai WANG,Song LIU. Diversity Analysis of 5 CDR3s of T Cell Receptor β Chain in Prostate Cancer[J]. China Biotechnology, 2019, 39(3): 7-12.
[14] Lin YANG,Yong-chao LI,Teng-hua ZHANG,Yi-xiao DENG,Jin YANG,Zhi-bo GAO. Comprehensive Evaluation is needed for Precision Diagnosis in Cancer Immunotherapies[J]. China Biotechnology, 2019, 39(2): 62-73.
[15] Xi-wen JIANG,Zi-wei DONG,Yue LIU,Xiao-ya ZHU. Reserch Progress on Biomarkers and Precision Medicine[J]. China Biotechnology, 2019, 39(2): 74-81.