Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (6): 48-54    DOI: 10.13523/j.cb.20190607
    
Application of Cell-penetrating Peptides in Tumor Targeted Therapy and Disease Diagnosis
Yu-feng ZHANG,Meng-jia XIE,Shu-lei ZHOU,Ling-ling XU,Tie-jun ZHAO()
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
Download: HTML   PDF(490KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In recent years, cell-penetrating peptides (CPP) have provided an effective strategy for intracellular delivery of biomolecules in the biomedical field. The application of CPP in cancer treatment and disease diagnosis were focused, mainly focused on its roles and advantages in tumor targeted therapy and medical imaging diagnosis. Meanwhile, according to the characteristics of CPP in drug delivery system, the deficiency of CPP should be improved to expand the possibility of combined drug utility, which has become the research hotspot.CPP and its applications were reviewed, then describes some optimized and improved methods to expand the clinical application of CPP.



Key wordsTarget peptides      Cancer      CPP     
Received: 07 November 2018      Published: 12 July 2019
ZTFLH:  Q816  
Corresponding Authors: Tie-jun ZHAO     E-mail: tjzhao@zjnu.cn
Cite this article:

Yu-feng ZHANG,Meng-jia XIE,Shu-lei ZHOU,Ling-ling XU,Tie-jun ZHAO. Application of Cell-penetrating Peptides in Tumor Targeted Therapy and Disease Diagnosis. China Biotechnology, 2019, 39(6): 48-54.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190607     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I6/48

CPP Amino acid sequence
Polyariginines RRRRRRRRR(R9)
Tat49-57 RKKRRQRRR
Penetratin(Antennapedia) RQIKIWFQNRRMKWKK
Pep-1 KETWWETWWTEWSQPKKKRKV
Table 1 Commonly used cell transmembrane peptide
[1]   Heitz F, Morris M C, Divita G . Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. British Journal of Pharmacology, 2009,157(2):195-206.
doi: 10.1111/j.1476-5381.2009.00057.x
[2]   Guidotti G, Brambilla L, Rossi D . Cell-penetrating peptides: from basic research to clinics. Trends in Pharmacological Sciences, 2017,38(4):406-424.
doi: 10.1016/j.tips.2017.01.003
[3]   Frankel A D, Pabo C O . Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988,55(6):1189-1193.
doi: 10.1016/0092-8674(88)90263-2
[4]   Green M, Loewenstein P M . Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988,55(6):1179-1188.
doi: 10.1016/0092-8674(88)90262-0
[5]   Ruben S, Perkins A, Purcell R , et al. Structural and functional characterization of human immunodeficiency virus tat protein. Journal of Virology, 1989,63(1):1-8.
[6]   Park J, Ryu J, Kim K A , et al. Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. The Journal of general virology, 2002,83(Pt 5):1173-1181.
doi: 10.1099/0022-1317-83-5-1173
[7]   Joliot A, Pernelle C, Deagostini-Bazin H , et al. Antennapedia homeobox peptide regulates neural morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 1991,88(5):1864-1868.
doi: 10.1073/pnas.88.5.1864
[8]   Derossi D, Joliot A H, Chassaing G , et al. The third helix of the Antennapedia homeodomain translocates through biological membranes. The Journal of Biological Chemistry, 1994,269(14):10444-10450.
[9]   Vasconcelos L, Parn K, Langel U . Therapeutic potential of cell-penetrating peptides. Therapeutic Delivery, 2013,4(5):573-591.
doi: 10.4155/tde.13.22
[10]   Martin M E, Rice K G . Peptide-guided gene delivery. The AAPS Journal, 2007,9(1):E18-29.
doi: 10.1208/aapsj0901003
[11]   El-Sayde A, Futaki S, Harashima H . Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. The AAPS Journal, 2009,11(1):13-22.
[12]   Regberg J, Srimanee A, Langel U . Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals, 2012,5(9):991-1007.
doi: 10.3390/ph5090991
[13]   Dokka S, Toledo-Velasquez D, Shi X , et al. Cellular delivery of oligonucleotides by synthetic import peptide carrier. Pharmaceutical Research, 1997,14(12):1759-1764.
doi: 10.1023/A:1012188014919
[14]   Nakayama F, Yasuda T, Umeda S , et al. Fibroblast growth factor-12 (FGF12) translocation into intestinal epithelial cells is dependent on a novel cell-penetrating peptide domain: involvement of internalization in the in vivo role of exogenous FGF12. The Journal of Biological Chemistry, 2011,286(29):25823-25834.
doi: 10.1074/jbc.M110.198267
[15]   Fernandez-Carneado J, Kogan M J, Pujals S , et al. Amphipathic peptides and drug delivery. Biopolymers, 2004,76(2):196-203.
doi: 10.1002/bip.v76:2
[16]   Tian H, Lin L, Chen J , et al. RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers. Journal of Controlled Release, 2011,155(1):47-53.
doi: 10.1016/j.jconrel.2011.01.025
[17]   Elliott G, O’Hare P . Intercellular trafficking of VP22-GFP fusion proteins. Gene Therapy, 1999,6(1):149-151.
[18]   Dietrich U, Durr R, Koch J . Peptides as drugs: from screening to application. Current Pharmaceutical Biotechnology, 2013,14(5):501-512.
doi: 10.2174/13892010113149990205
[19]   Morris M C, Deshayes S, Heitz F , et al. Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biology of the Cell, 2008,100(4):201-217.
doi: 10.1042/BC20070116
[20]   Fonseca S B, Pereira M P, Kelley S O . Recent advances in the use of cell-penetrating peptides for medical and biological applications. Advanced Drug Delivery Reviews, 2009,61(11):953-964.
doi: 10.1016/j.addr.2009.06.001
[21]   Richard J P, Melikov K, Vives E , et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. The Journal of Biological Chemistry, 2003,278(1):585-590.
doi: 10.1074/jbc.M209548200
[22]   Futaki S, Nakase I, Tadokoro A , et al. Arginine-rich peptides and their internalization mechanisms. Biochemical Society Transactions, 2007,35(Pt 4):784-787.
doi: 10.1042/BST0350784
[23]   Mayor S, Pagano R E . Pathways of clathrin-independent endocytosis. Nature Reviews Molecular Cell Biology, 2007,8(8):603-612.
[24]   Maler L . Solution NMR studies of cell-penetrating peptides in model membrane systems. Advanced Drug Delivery Reviews, 2013,65(8):1002-1011.
doi: 10.1016/j.addr.2012.10.011
[25]   Prochiantz A . Homeoprotein intercellular transfer, the hidden face of cell-penetrating peptides. Methods in Molecular Biology, 2011,683(683):249.
doi: 10.1007/978-1-60761-919-2
[26]   Mor A, Nguyen V H, Delfour A , et al. Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry, 1991,30(36):8824-8830.
doi: 10.1021/bi00100a014
[27]   Shai Y . Mode of action of membrane active antimicrobial peptides. Biopolymers, 2002,66(4):236-248.
doi: 10.1002/(ISSN)1097-0282
[28]   Farkhani S M, Valizadeh A, Karami H , et al. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides, 2014,57(7):78-94.
doi: 10.1016/j.peptides.2014.04.015
[29]   Ruoslahti E . Tumor penetrating peptides for improved drug delivery. Advanced Drug Delivery Reviews, 2017, 110-111:3-12.
doi: 10.1016/j.addr.2016.03.008
[30]   Deshayes S, Morris M, Heitz F , et al. Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Advanced Drug Delivery Reviews, 2008,60(4-5):537-547.
doi: 10.1016/j.addr.2007.09.005
[31]   Rothbard J B, Garlington S, Lin Q , et al. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nature Medicine, 2000,6(11):1253-1257.
[32]   Lindgren M, Rosenthal-Aizman K, Saar K , et al. Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochemical Pharmacology, 2006,71(4):416-425.
doi: 10.1016/j.bcp.2005.10.048
[33]   Mccusker C T, Wang Y, Shan J , et al. Inhibition of experimental allergic airways disease by local application of a cell-penetrating dominant-negative STAT-6 peptide. Journal of Immunology, 2007,179(4):2556-2564.
doi: 10.4049/jimmunol.179.4.2556
[34]   Tamura K, Arakawa H, Suzuki M , et al. Novel dinucleotide repeat polymorphism in the first exon of the STAT-6 gene is associated with allergic diseases. Clinical and Experimental Allergy, 2001,31(10):1509-1514.
doi: 10.1046/j.1365-2222.2001.01191.x
[35]   Hotchkiss R S, Swanson P E, Freeman B D , et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Critical Care Medicine, 1999,27(7):1230-1251.
doi: 10.1097/00003246-199907000-00002
[36]   Hotchkiss R S, Tinsley K W, Swanson P E , et al. Depletion of dendritic cells, but not macrophages, in patients with sepsis. Journal of Immunology, 2002,168(5):2493-2500.
doi: 10.4049/jimmunol.168.5.2493
[37]   Hotchkiss R S, Swanson P E, Knudson C M , et al. Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. Journal of Immunology, 1999,162(7):4148-4156.
[38]   Hotchkiss R S, Mcconnell K W, Bullok K , et al. TAT-BH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo. Journal of Immunology, 2006,176(9):5471-5477.
doi: 10.4049/jimmunol.176.9.5471
[39]   Patil S D, Rhodes D G, Burgess D J . DNA-based therapeutics and DNA delivery systems: a comprehensive review. The AAPS Journal, 2005,7(1):E61-77.
[40]   Akhtar S, Juliano R L . Cellular uptake and intracellular fate of antisense oligonucleotides. Trends in Cell Biology, 1992,2(5):139-144.
doi: 10.1016/0962-8924(92)90100-2
[41]   Lo S L, Wang S . An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials, 2008,29(15):2408-2414.
doi: 10.1016/j.biomaterials.2008.01.031
[42]   Ray A, Norden B . Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J, 2000,14(9):1041-1060.
doi: 10.1096/fasebj.14.9.1041
[43]   Mcmanus M T, Sharp P A . Gene silencing in mammals by small interfering RNAs. Nature Reviews Genetics, 2002,3(10):737-747.
[44]   Chiu Y L, Alia A, Chu C Y , et al. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chemistry & Biology, 2004,11(8):1165-1175.
[45]   Johnson L N, Cashman S M, Kumar-Singh R . Cell-penetrating peptide for enhanced delivery of nucleic acids and drugs to ocular tissues including retina and cornea. Molecular Therapy, 2008,16(1):107-114.
doi: 10.1038/sj.mt.6300324
[46]   Rozenzhak S M, Kadakia M P, Caserta T M , et al. Cellular internalization and targeting of semiconductor quantum dots. Chemical Communications, 2005,17(17):2217-2219.
[47]   Santra S, Yang H, Dutta D , et al. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chemical Communications, 2004,24(24):2810-2811.
[48]   Webster A, Compton S J, Aylott J W . Optical calcium sensors: development of a generic method for their introduction to the cell using conjugated cell penetrating peptides. The Analyst, 2005,130(2):163-170.
doi: 10.1039/b413725f
[49]   Jiang T, Olson E S, Nguyen Q T , et al. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(51):17867-17872.
doi: 10.1073/pnas.0408191101
[50]   Alivisatos A P, Johnsson K P, Peng X , et al. Organization of ‘nanocrystal molecules’ using DNA. Nature, 1996,382(6592):609-611.
[51]   Ballou B, Lagerholm B C, Ernst L A , et al. Noninvasive imaging of quantum dots in mice. Bioconjugate Chemistry, 2004,15(1):79-86.
doi: 10.1021/bc034153y
[52]   Silver J, Ou W . Photoactivation of quantum dot fluorescence following endocytosis. Nano Letters, 2005,5(7):1445-1449.
doi: 10.1021/nl050808n
[53]   Lagerholm B C, Weinreb G E, Jacobson K , et al. Detecting microdomains in intact cell membranes. Annual Review of Physical Chemistry, 2005,56(1):309-336.
doi: 10.1146/annurev.physchem.56.092503.141211
[54]   Delehanty J B, Medintz I L, Pons T , et al. Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. Bioconjugate Chemistry, 2006,17(4):920-927.
doi: 10.1021/bc060044i
[55]   Yu W, Zhan Y, Xue B , et al. Highly efficient cellular uptake of a cell-penetrating peptide (CPP) derived from the capsid protein of porcine circovirus type 2. Journal of Biological Chemistry, 2018,293(3):15221-15232.
doi: 10.1074/jbc.RA118.004823
[56]   Ruoslahti E, Bhatia S N, Sailor M J . Targeting of drugs and nanoparticles to tumors. Journal of Cell Biology, 2010,188(6):759-768.
doi: 10.1083/jcb.200910104
[57]   Tan M, Lan K H, Yao J , et al. Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide. Cancer Research, 2006,66(7):3764-3772.
doi: 10.1158/0008-5472.CAN-05-2747
[58]   Salazar M D, Ratnam M . The folate receptor: what does it promise in tissue-targeted therapeutics. Cancer Metastasis Reviews, 2007,26(1):141-152.
doi: 10.1007/s10555-007-9048-0
[59]   Kunath K, Merdan T, Hegener O , et al. Integrin targeting using RGD-PEI conjugates for in vitro gene transfer. The Journal of Gene Medicine, 2003,5(7):588-599.
doi: 10.1002/jgm.382
[60]   Wang L, Su W, Liu Z , et al. CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials, 2012,33(20):5107-5114.
doi: 10.1016/j.biomaterials.2012.03.067
[61]   Xu Y, Wang B, Kaur R , et al. A Supramolecular [10] CPP junction enables efficient electron transfer in modular porphyrin-[10] CPP supersetFullerene complexes. Angewandte Chemie, 2018,57(36):11549-11553.
doi: 10.1002/anie.201802443
[62]   Bolton S J, Jones D N, Darker J G , et al. Cellular uptake and spread of the cell-permeable peptide penetratin in adult rat brain. The European Journal of Neuroscience, 2000,12(8):2847-2855.
doi: 10.1046/j.1460-9568.2000.00171.x
[63]   Lim K J, Sung B H, Shin J R , et al. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells. PLoS One, 2013,8(6):e66084.
doi: 10.1371/journal.pone.0066084
[64]   Leriche G, Chisholm L, Wanger A . Cleavable linkers in chemical biology. Bioorganic & Medicinal Chemistry, 2012,20(2):571-582.
[65]   Alves I D, Carre M, Montero M P , et al. A proapoptotic peptide conjugated to penetratin selectively inhibits tumor cell growth. Biochimica et Biophysica Acta, 2014,1838(8):2087-2098.
doi: 10.1016/j.bbamem.2014.04.025
[66]   Choi K Y, Swierczewska M, Lee S , et al. Protease-activated drug development. Theranostics, 2012,2(2):156-178.
doi: 10.7150/thno.4068
[67]   Orzechowska E J, Kozlowska E, Czubaty A , et al. Controlled delivery of BID protein fused with TAT peptide sensitizes cancer cells to apoptosis. BMC Cancer, 2014,14(1):771.
doi: 10.1186/1471-2407-14-771
[68]   Wang H X, Yang X Z, Sun C Y , et al. Matrix metalloproteinase 2-responsive micelle for siRNA delivery. Biomaterials, 2014,35(26):7622-7634.
doi: 10.1016/j.biomaterials.2014.05.050
[69]   Chang X, Hou Y . Expression of RecA and cell-penetrating peptide (CPP) fusion protein in bacteria and in mammalian cells. International Journal of Biochemistry and Molecular Biology, 2018,9(1):1-10.
[1] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[2] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[3] LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells[J]. China Biotechnology, 2021, 41(4): 9-17.
[4] TANG De-ping,XING Meng-jie,SONG Wen-tao,YAO Hui-hui,MAO Ai-hong. Advance of microRNA Therapeutics in Cancer and Other Diseases[J]. China Biotechnology, 2021, 41(11): 64-73.
[5] TANG Min,WAN Qun,SUN Shi-lei,HU Jing,SUN Zi-jiu,FANG Yu-ting,ZHANG Yan. The Effects of Hsa-miR-5195-3p on the Proliferation, Migration and Invasion of Human Cervical Cancer SiHa Cells[J]. China Biotechnology, 2020, 40(4): 17-24.
[6] CHEN Xue-yan,ZHANG Na,CHEN Juan,YANG Yan-hong,ZHANG Ju-feng. Effect of Hsa-miR-411-3P on Gastric Cancer Cells and Related Mechanisms[J]. China Biotechnology, 2020, 40(4): 1-9.
[7] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[8] HU Li-jun,DUAN Liang,HUANG Yi-yun,LIN Lu,HUANG Mao,CHEN Lu,PENG Qi,HU Qin,ZHANG Yan,ZHOU Lan. S100A9 Is Involved in Fusobacterium nucleatum-Induced Proliferation and Migration of Colon Cancer HCT116 and SW480 Cells[J]. China Biotechnology, 2020, 40(1-2): 84-91.
[9] FENG Xue-jiao,HOU Hai-long,YU Qiong,WANG Jun-shu. Market Analysis and Countermeasures of Cervical Cancer Vaccine in China[J]. China Biotechnology, 2020, 40(11): 96-101.
[10] Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG. Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer[J]. China Biotechnology, 2019, 39(7): 79-84.
[11] Jie XIAN,Xue QIN,You-de CAO. Numb Inhibits the Ubiquitination Degradation of p53 by HDM2 in Triple-negative Breast Cancer[J]. China Biotechnology, 2019, 39(7): 1-7.
[12] Wei-bing PAN,Peng ZHU,Qi-ang ZENG,Kai WANG,Song LIU. Diversity Analysis of 5 CDR3s of T Cell Receptor β Chain in Prostate Cancer[J]. China Biotechnology, 2019, 39(3): 7-12.
[13] Lin YANG,Yong-chao LI,Teng-hua ZHANG,Yi-xiao DENG,Jin YANG,Zhi-bo GAO. Comprehensive Evaluation is needed for Precision Diagnosis in Cancer Immunotherapies[J]. China Biotechnology, 2019, 39(2): 62-73.
[14] Xi-wen JIANG,Zi-wei DONG,Yue LIU,Xiao-ya ZHU. Reserch Progress on Biomarkers and Precision Medicine[J]. China Biotechnology, 2019, 39(2): 74-81.
[15] LU Zhong-teng,HU Gao-wei. Identification Methods of Novel Cell Penetrating Peptides and Application in Antitumor Therapy[J]. China Biotechnology, 2019, 39(12): 50-55.