Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (3): 7-12    DOI: 10.13523/j.cb.20190302
    
Diversity Analysis of 5 CDR3s of T Cell Receptor β Chain in Prostate Cancer
Wei-bing PAN1,**(),Peng ZHU2,Qi-ang ZENG2,Kai WANG2,Song LIU3
Research Center for Clinical Medicine of Shenzhen Hospital, Shenzhen 518118,China
Download: HTML   PDF(764KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

T lymphocyte receptors (TCRs) play an important role in antigen recognition immune response, and their diversity is closely related to host immune response and tumor prognosis. Objective: To investigate the clonal diversity and cloning sequence of T cell receptor (TCR) in prostate cancer tissues and paracancerous tissues by high-throughput sequencing. Methods: The cancer tissues and paracancerous tissues of 5 patients with PC were collected.After DNA extraction, the CDR3 region of TCR β chain was amplified by multiplex PCR. Sequencing was performed with Illumina MiSeq, and the composition characteristics of the TCR CDR3 library of prostate cancer tissues were compared by data processing and comparison analysis. Results: Prostate cancer tissues had a higher degree of cloning and higher high-amplification clones than HECs (HEC: frequency>0.5% TCR clones of total sample reads) and obtained 24 pairs of differential expression in cancer tissue samples The VJ gene combination, 16 pairs of VJ gene combinations differentially expressed in paracancerous tissue samples. Conclusion: There are different V-J gene combinations and high cloned HEC in prostate cancer tissues and adjacent tissues, and cancer tissue samples have higher HEC. This study provides new data for immunological research on the development of PC, and provides reference for research on PC immune surveillance and T cell receptor mutation markers, laying a foundation for further research.



Key wordsProstate      cancer      Tcell      receptor      Immune      pool      High-throughput      sequencing     
Received: 09 August 2018      Published: 12 April 2019
ZTFLH:  R737  
Corresponding Authors: Wei-bing PAN     E-mail: 1329700025 @qq.com
Cite this article:

Wei-bing PAN,Peng ZHU,Qi-ang ZENG,Kai WANG,Song LIU. Diversity Analysis of 5 CDR3s of T Cell Receptor β Chain in Prostate Cancer. China Biotechnology, 2019, 39(3): 7-12.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190302     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I3/7

类型 癌症组织 癌旁组织
HEC数量 26 8
HEC比率 0.35 0.23
HEC:高度扩增克隆比
Table 1 HEC in cancer and adjacent tissues
Fig.1 Clonal distribution of CDR3 base sequences in cancer tissues and adjacent tissues at each cloning frequency distribution The X axis represents the four clone frequency distribution segments, and the Y axis is the percentage of the corresponding frequency distribution segment
Fig.2 Comparison of V gene between cancer and adjacent tissues The x axis represents the V gene subtype, and the y axis represents the percentage of the corresponding V subtype in the sample
Fig.3 Comparison of J gene between cancerous tissue and adjacent cancer tissue The x axis represents the J gene subtype, and the y axis represents the percentage of the corresponding J subtype in the sample
VJ Gene Degree of expression(%)
TRBV24-1:TRBJ2-7 12.39
TRBV15:TRBJ2-5 5.49
TRBV24-1:TRBJ2-5 4.65
TRBV2:TRBJ2-5 3.78
TRBV2:TRBJ2-7 3.45
TRBV2:TRBJ1-5 3.34
TRBV2:TRBJ1-1 2.85
TRBV19:TRBJ2-5 1.92
TRBV25-1:TRBJ2-5 1.67
TRBV19:TRBJ1-2 1.61
TRBV25-1:TRBJ2-7 1.54
TRBV25-1:TRBJ2-3 1.52
TRBV10-1:TRBJ2-5 1.41
TRBV15:TRBJ2-7 1.40
TRBV10-3:TRBJ2-7 1.40
TRBV15:TRBJ1-6 1.38
TRBV7-2:TRBJ2-7 1.38
TRBV2:TRBJ2-2 1.32
TRBV12-3:TRBJ2-7 1.29
TRBV7-8:TRBJ2-7 1.18
TRBV10-3:TRBJ25 1.16
TRBV19:TRBJ2-7 1.15
TRBV19:TRBJ1-1 1.07
TRBV20-1:TRBJ1-2 1.02
Table 2 Application of VJ gene pairing in cancer samples
VJ Gene Degree of expression(%)
TRBV30:TRBJ1-1 10.07
TRBV15:TRBJ2-3 7.15
TRBV2:TRBJ2-7 5.21
TRBV2:TRBJ1-1 3.93
TRBV24-1:TRBJ1-1 3.57
TRBV2:TRBJ2-5 2.07
TRBV19:TRBJ1-2 1.80
TRBV2:TRBJ1-2 1.78
TRBV20-1:TRBJ2-7 1.25
TRBV2:TRBJ2-3 1.21
TRBV2:TRBJ2-2 1.21
TRBV12-3:TRBJ2-7 1.20
TRBV12-3:TRBJ1-2 1.18
TRBV29-1:TRBJ1-4 1.16
TRBV15:TRBJ2-5 1.03
TRBV2:TRBJ2-1 1.00
Table 3 Application of VJ gene pairing in paracancerous samples
[1]   吴维, 江娟, 吕磊 , 等. 外泌体在前列腺癌发展和转移中的作用. 中国现代医学杂志, 2018,28(06):38-44.
[1]   Wu W, Jiang J, Lv L , et al. Role of exosomes in development and metastasis of prostate cancer. China Journal of Modern Medicine, 2018,28(06):38-44.
[2]   刘申, 吴小候 . 前列腺癌诊断的研究新进展. 重庆医学, 2017,46(15):2150-2152.
doi: 10.3969/j.issn.1671-8348.2017.15.045
[2]   Liu S, Wu X H . New progress in the diagnosis of prostate cancer. Chongqing Medicine, 2017,46(15):2150-2152.
doi: 10.3969/j.issn.1671-8348.2017.15.045
[3]   蔡忠林, 刘强照, 王朝阳 , 等. 高强度聚焦超声在前列腺癌治疗中的临床应用进展. 现代肿瘤医学, 2017,25(12):2011-2014.
doi: 10.3969/j.issn.1672-4992.2017.12.041
[3]   Cai Z L, Liu Q Z, Wang Z Y , et al. The clinical application progress of HIFU in the treatment of prostate cancer. Journal of Modern Oncology, 2017,25(12):2011-2014.
doi: 10.3969/j.issn.1672-4992.2017.12.041
[4]   朱莹, 丁顺凯, 林烈文 , 等. 胃癌患者肿瘤组织与外周血T细胞受体CDR3的差异分析. 转化医学电子杂志, 2018,5(4):21-25.
[4]   Zhu Y, Ding S K, Lin L W , et al. The variation analysis of T-cell receptor repertoire in tumor tissue and blood from gastric cancer patients. E-Journal of Translational Medicine , 2018,5(4):21-25.
[5]   姜明, 周则卫, 张浩 , 等. T细胞受体多态性与疾病的关系. 现代免疫学, 2013,33(3):247-251.
[5]   Jiang M, Zhou Z W, Zhang H , et al. Relationship between T cell receptor polymorphism and disease. Current Immunology, 2013,33(3):247-251.
[6]   Liu S, Pan W, Cheng Z , et al. Characterization of the T-cell receptor repertoire by deep T cell receptor sequencing in tissues from patients with prostate cancer. Oncology Letters, 2018,15(2):1744-1752.
doi: 10.3892/ol.2017.7479 pmid: 29399194
[7]   Dewey F E, Grove M E, Pan C , et al. Clinical interpretation and implications of whole-genome sequencing. The Journal of the Amercian Medical Association, 2014,311(10) : 1035-1045.
doi: 10.1001/jama.2014.1717
[8]   罗妍, 葛蕙心, 王文玲 , 等. 前列腺癌免疫治疗的研究进展. 医学综述, 2016,22(12):2334-2338.
doi: 10.3969/j.issn.1006-2084.2016.12.014
[8]   Luo Y, Ge H X, Wang W L , et al. Research progresss of immunotherapy in prostate cancer. Medical Recapitulate , 2016,22(12):2334-2338.
doi: 10.3969/j.issn.1006-2084.2016.12.014
[9]   Genitsen W R, Sharma P . Current and emerging treatment options for castration-resistant prostate cancer:A focus on immunotherapy. Journal Clinical Immunology, 2012,32(1) : 25-35.
doi: 10.1007/s10875-011-9595-6 pmid: 22048979
[10]   钟晓松 . T细胞受体与肿瘤免疫治疗. 国外医学(免疫学分册), 1996,4:200-203.
[10]   Zhong X S . T cell receptor and tumor immunotherapy. Foreign Medical Sciences(Section of Immunology Foreign Medical Sciences), 1996,4:200-203.
[11]   Strasner A, Karin M . Immune infiltration and prostate cancer. Frontiers in Oncology, 2015,5:128.
doi: 10.3389/fonc.2015.00128 pmid: 4495337
[12]   Derhovanessian E, Adams V, Hähnel K , et al. Pretreatment frequency of circulating IL-17+CD4+ T-cells, but not Tregs, correlates with clinical response to whole cell vaccination in prostate cancer patients. International Journal of Cancer, 2009,125:1372-1379.
doi: 10.1002/ijc.v125:6
[13]   张天, 孙素红 . 高通量测序技术检测T&B细胞CDR3受体库在临床中的应用. 中华临床医师杂志(电子版), 2014,8(9):1739-1742.
[13]   Zhang T, Sun S H . High-throughput sequencing detection T&B lymphocyte CDR3 receptor library in clinical application. Chinese Journal of Clinicians(Electronic Edition), 2014,8(9):1739-1742.
[14]   王鹏, 贺晓燕, 王小妹 , 等. T细胞TCR CDR3受体库的高通量测序分析概况. 中国免疫学杂志, 2011,27(10):512-516.
doi: 10.3969/j.issn.1000-484X.2011.10.020
[14]   Wang P, He X Y , Wang X M .et al.Overview of high-throughput sequencing analysis of T cell CDR3 receptor library. Chinese Journal of Immunology, 2011,27(10):512-516.
doi: 10.3969/j.issn.1000-484X.2011.10.020
[1] HE Li-heng,ZHANG Yi,ZHANG Jie,REN Yu-chao,XIE Hong-e,TANG Rui-min,JIA Xiao-yun,WU Zong-xin. Construction of Gene Co-expression Network and Identification of Hub Genes Related to Anthocyanin Biosynthesis Based on RNA-seq and WGCNA in Sweetpotato[J]. China Biotechnology, 2021, 41(9): 27-36.
[2] CHEN Ya-chao,LI Nan-nan,LIU Zi-di,HU Bing,LI Chun. Metagenomic Mining of Functional Genes Related to Glycyrrhizin Synthesis from Endophytes of Licorice[J]. China Biotechnology, 2021, 41(9): 37-47.
[3] ZHAO Meng-ze,LI Feng-zhi,WANG Peng-yin,LI Jian,XU Han-mei. Research Progress of Dual-target Blocking Therapy of PD-L1 and VEGF[J]. China Biotechnology, 2021, 41(9): 71-77.
[4] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[5] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[6] GE Qi,ZHANG Peng,HAN Ming-zhe,YANG Jin-sheng,ZHANG Da-lu,CHEN Wei-gang. Signal Processing for Nanopore Sequencing and Its Application in DNA Data Storage[J]. China Biotechnology, 2021, 41(8): 75-89.
[7] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[8] LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells[J]. China Biotechnology, 2021, 41(4): 9-17.
[9] LI Bo,WANG Ze-jian,LIANG Jian-guang,LIU Ai-jun,LI Hai-dong. Breeding of High-yield Rifamycin SV Strain by Plasma Action Combined with Oxygen Restriction Model[J]. China Biotechnology, 2021, 41(2/3): 38-44.
[10] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[11] FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method[J]. China Biotechnology, 2021, 41(11): 55-63.
[12] TANG De-ping,XING Meng-jie,SONG Wen-tao,YAO Hui-hui,MAO Ai-hong. Advance of microRNA Therapeutics in Cancer and Other Diseases[J]. China Biotechnology, 2021, 41(11): 64-73.
[13] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[14] DAI Han-ying,XU Ke-qian. Research Progress on DNA Double-Strand Break Assay[J]. China Biotechnology, 2020, 40(8): 55-62.
[15] JIN Lu,ZHOU Hang,CAO Yun,WANG Zhou-shou,CAO Rong-yue. Research on Applications of High-Throughput Perfusion Models in Bioprocessing Development[J]. China Biotechnology, 2020, 40(8): 63-73.