Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (9): 84-90    DOI: 10.13523/j.cb.20190911
Orginal Article     
The Application of Related Cytomorphological Technology in Hematological Neoplasms Research Progress
PENG Xian-gui,YANG Wu-chen,LI Jia,GOU Yang,WANG Ping,LIU Si-heng,ZHANG Yun,LI Yi,ZHANG Xi()
Hematological Medical Center in Xinqiao Hospital of Military Medical University, Chongqing 400037, China
Download: HTML   PDF(406KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cytomorphological test is a traditional experimental diagnostic technique for hematological diseases, which is convenient, fast and practical. It is the most intuitive basis for pathological diagnosis, while the current optical microscopy technology can not fully meet the needs of accurate diagnosis of hematological tumors. How to develop, research and improve the related technologies and maximize the advantages of morphology is a problem worthy of our discussion and research. The application of cytomorphological technology in early diagnosis, curative effect, prognosis evaluation and disease recurrence of Hematological neoplasms is systematically reviewed. It is believed that Cytomorphological technology will bring new opportunities for the diagnosis and treatment of hematological system tumors.



Key wordsCytomorphology      Microscope      Flow cytometry      Artificial intelligence      Hematological neoplasms     
Received: 21 August 2019      Published: 20 September 2019
ZTFLH:  R446.11+3  
Corresponding Authors: Xi ZHANG     E-mail: zhangxxi@sina.com
Cite this article:

PENG Xian-gui,YANG Wu-chen,LI Jia,GOU Yang,WANG Ping,LIU Si-heng,ZHANG Yun,LI Yi,ZHANG Xi. The Application of Related Cytomorphological Technology in Hematological Neoplasms Research Progress. China Biotechnology, 2019, 39(9): 84-90.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190911     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I9/84

[1]   Goodwin P C . A primer on the fundamental principles of light microscopy: Optimizing magnification, resolution, and contrast. Molecular Reproduction and Development, 2015,82(7-8):502-507.
[2]   Zhao J, Liang J W, Xue H L , et al. The genetics and clinical characteristics of children morphologically diagnosed as acute promyelocytic leukemia. Leukemia, 2019,33(6):1387-1399.
[3]   Vidholia A, Menon M P . “Cup-like” blasts in acute myeloid leukemia with FLT3 and NPM1 mutations. Blood, 2015,125(5):889.
[4]   Teixeira C, Azevedo A P, Silva C , et al. “Cup-like” blast cells in B lymphoblastic leukaemia: A clinical case. Haematologica, 2018,103:323-323.
[5]   Takaku T, Malide D, Chen J C , et al. Hematopoiesis in 3 dimensions: human and murine bone marrow architecture visualized by confocal microscopy. Blood, 2010,116(15):E41-E55.
[6]   Spinner N B . Chromosome banding//Stanley M, Kelly H. Brenners encyclopedia of genetics. Amsterdan:Elsevier, 2013: 546-548.
[7]   Hu L, Ru K, Zhang L , et al. Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. Biomarker Research, 2014,2(1):3.
[8]   Bozorg-Ghalati F, Mohammadpour I, Ranjbaran R . Applications of fluorescence in situ hybridization in detection of disease biomarkers and personalized medicine. Comparative Clinical Pathology, 2019,28(1):3-10.
[9]   Skonieczka K, Matiakowska K, Haus O . The hematological malignancies related to primary hypereosinophilia and their diagnostics. Postpy Higieny I Medycyny Dowiadczalnej, 2014,68:1530-1537.
[10]   Dewald G W, Schad C R, Christensen E R , et al. The application of fluorescent in situ hybridization to detect Mbcr/abl fusion in variant Ph chromosomes in CML and ALL. Cancer Genetics & Cytogenetics, 1993,71(1):7.
[11]   Wan Thomas S K . Applications of fluorescence in situ hybridization technology in malignancies// Cancer cytogenetics [Methods in molecular biology]. Berlin: Springer, 2017, 75-90.
[12]   Balzarotti F, Eilers Y, Gwosch K C , et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 2017,355(6325):606-661.
[13]   Fernández-Suárez ,Marta, Ting A Y. Fluorescent probes for super-resolution imaging in living cells. Nature Reviews Molecular Cell Biology, 2008,9(12):929-943.
[14]   Wang H W, Lei J, Shi Y . Biological cryo-electron microscopy in China. Protein Science, 2016,26(1):16-31.
[15]   Terzakis J A, Santagada E, Hernandez A , et al. Scanning electron microscopy of peripheral blood smears: Comparison of normal blood with some common leukemias. Ultrastructural Pathology, 2005,29(1):19-28.
[16]   Polliack A, Tadmor T . Surface topography of hairy cell leukemia cells compared to other leukemias as seen by scanning electron microscopy. Leukemia & Lymphoma, 2011,52:14-17.
[17]   Ru Y X, Mi Y C, Liu J H , et al. Significance of transmission electron microscopy in subtyping of monocytic leukemia. Ultrastructural Pathology, 2009,33(2):67-75.
[18]   Chatterjee T, Mahapatra M, Pati H P , et al. Use of transmission electron microscopy in diagnosis of acute leukemias: A prospective study of fifty cases. Blood, 2005,106(11):4509.
[19]   Chetty T, Masingi N I, Laher Z , et al. Acute megakaryoblastic leukaemia: light microscopy and scanning electron microscopy of blast cells. British Journal of Haematology, 2017,176(5):686.
[20]   Terzakis J A, Taskin M . Peripheral blood smears of myelodysplasia patients: Scanning electron microscope findings. Ultrastructural Pathology, 2008,32(4):127-138.
[21]   Resnitzky P, Shaft D, Shalev H , et al. Morphological features of congenital dyserythropoietic anemia type I: The role of electron microscopy in diagnosis. European Journal of Haematology, 2017,99(4):366-371.
[22]   Shvidel L, Shtalrid M, Shaft D , et al. t(8;21) acute myeloid leukemia with trilineage phenotype diagnosed by electron microscopy. Leuk Lymphoma, 2008,49(11):2203-2205.
[23]   Shvidel L, Sigler E, Shtalrid M , et al. Hybrid eosinophilic-basophilic acute myeloid leukaemia diagnosed by electron microscopy. British Journal of Haematology, 2007,137(4):381-383.
[24]   Lee S, Graham L M, Chan G , et al. A diagnostic mystery solved by electron microscopy: A case of an “Atypical” lymphoproliferative disorder. Ultrastructural Pathology, 2012,36(5):362-365.
doi: 10.3109/01913123.2012.691952
[25]   Eyden B, Chakrabarty B, Hatimy U . Carcinoma versus cytokeratin-positive lymphoma: A case report emphasizing the diagnostic role of electron microscopy. Ultrastructural Pathology, 2009,33(1):33-38.
[26]   Yen C F, Sivasankar S . Minimizing open-loop piezoactuator nonlinearity artifacts in atomic force microscope measurements. Journal of Vacuum Science & Technology B, 2017,35(5):053201.
[27]   Gaman A, Osiac E, Rotaru I , et al. Surface morphology of leukemic cells from chronic myeloid leukemia under atomic force microscopy. Curr Health Sci J, 2013,39(1):45-47.
[28]   Zhang Y P, Zhang W, Wang S Q , et al. Detection of human erythrocytes influenced by iron deficiency anemia and thalassemia using atomic force microscopy. Micron, 2012,43(12):1287-1292.
[29]   Li M, Liu L Q, Xi N , et al. Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells. Science China-Life Sciences, 2012,55(11):968-973.
doi: 10.1007/s11427-012-4399-3
[30]   Li J, Wertheim G, Paessler M , et al. Flow cytometry in pediatric hematopoietic malignancies. Clinics in Laboratory Medicine, 2017,37(4):879-893.
[31]   Han Y, Gu Y, Zhang A C , et al. Review: imaging technologies for flow cytometry. Lab on a Chip, 2016,16(24):4639.
[32]   Grimwade L F, Fuller K A, Erber W N . Applications of imaging flow cytometry in the diagnostic assessment of acute leukaemia. Methods, 2017,112:39-45.
[33]   Hui H, Fuller K A, Chuah H , et al. Imaging flow cytometry to assess chromosomal abnormalities in chronic lymphocytic leukaemia. Methods, 2018,134-135:32-40.
[34]   Lei C, Kobayashi H, Wu Y , et al. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nat Protoc, 2018,13(7):1603-1631.
[35]   Koo B K, Samady H . Strap in for the artificial intelligence revolution in interventional cardiology. JACC Cardiovasc Interv, 2019,12(14):1325-1327.
[36]   Auffermann W F, Gozansky E K, Tridandapani S . Artificial intelligence in cardiothoracic radiology. Am J Roentgenol, 2019,212(5):1-5.
[37]   Bora K, Chowdhury M, Mahanta L B , et al. Automated classification of Pap smear images to detect cervical dysplasia. Comput Methods Programs Biomed, 2017,138:31-47.
[38]   Elsalamony H A . Healthy and unhealthy red blood cell detection in human blood smears using neural networks. Micron, 2016,83:32-41.
[39]   Hegde R B, Prasad K, Hebbar H , et al. Feature extraction using traditional image processing and convolutional neural network methods to classify white blood cells: a study. Australas Phys Eng Sci Med, 2019,42(2):627-638.
[40]   Kazemi F, Najafabadi T A, Araabi B N . Automatic recognition of acute myelogenous leukemia in blood microscopic images using K-means clustering and support vector machine. J Med Signals Sens, 2016,6(3):183-193.
[41]   Su J, Liu S, Song J . A segmentation method based on HMRF for the aided diagnosis of acute myeloid leukemia. Comput Methods Programs Biomed, 2017,152:115-123.
[42]   Moshavash Z, Danyali H, Helfroush M S . An automatic and robust decision support system for accurate acute leukemia diagnosis from blood microscopic images. J Digit Imaging, 2018,31(5):702-717.
[43]   Acharya V, Kumar P . Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Med Biol Eng Comput, 2019,57(8):1783-1811.
[44]   Shafique S, Tehsin S . Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technol Cancer Res Treat, 2018,17:1-7.
[45]   Shaabanpour A F, Mollashahi B, Nosrati M , et al. Application of an artificial neural network in the diagnosis of chronic lymphocytic leukemia. Cureus, 2019,11(2):e4004.
[46]   Saeedizadeh Z, Mehri Dehnavi A, Talebi A , et al. Automatic recognition of myeloma cells in microscopic images using bottleneck algorithm, modified watershed and SVM classifier. J Microsc, 2016,261(1):46-56.
[47]   Darrow M C, Zhang Y, Cinquin B P , et al. Visualizing red blood cell sickling and the effects of inhibition of sphingosine kinase 1 using soft X-ray tomography. J Cell Sci, 2016,129(18):3511-3517.
[48]   Wang Q, Wang J, Zhou M , et al. Spectral-spatial feature-based neural network method for acute lymphoblastic leukemia cell identification via microscopic hyperspectral imaging technology. Biomed Opt Express, 2017,8(6):3017-3028.
[1] HE Ling-ling,LUO Ting-ting,CHANG Yan,WANG Ya-zhe,YUAN Xiao-ying,SHI Wei-hua,LAI Yue-yun,SHI Hong-xia,QIN Ya-zhen,HUANG Xiao-jun,LIU Yan-rong. Analysis on the Laboratory Examination Characteristics in 28 Patients with Acute Megakaryoblastic Leukemia[J]. China Biotechnology, 2019, 39(9): 2-10.
[2] ZHAO Si-shu,LIU Lu,LIU Fang,QIU Hai-rong,FAN Lei,LI Jian-yong,WU Yu-jie. Diagnostic Value of CD11c Antigen in Patients with Chronic Lymphocytic Leukemia[J]. China Biotechnology, 2019, 39(9): 19-24.
[3] YUAN Xiao-ying,WANG Ya-zhe,SHI Wei-hua,CHANG Yan,HAO Le,HE Ling-ling,SHI Hong-xia,HUANG Xiao-jun,LIU Yan-rong. Methodological Study on Flow Detection of PNH Clone and Its Clinical Screening Significance[J]. China Biotechnology, 2019, 39(9): 33-40.
[4] HUI Yi-hua,WANG Hai-na,QI Yu-feng,CAO Xue-ling,GUAN Xue-mei,DUAN Jing-jing,DUAN Yi- jun,WANG Yan- feng,SU Wen. Normal Reference Range of Lymphocyte Subsets in Healthy Adults in Shanxi Province[J]. China Biotechnology, 2019, 39(9): 41-49.
[5] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.
[6] Ao-shen WU,Xiao-na LIU,Yun-he LIU,Gang LIU,Lei LIU. Application of Second Generation Gene Sequencing Data Management and Big Data Platform in Precision Medicine[J]. China Biotechnology, 2019, 39(2): 101-111.
[7] Zhi-yong XIE,Xiang ZHOU. Machine Learning in Medical Imaging:the Applications in Drug Discovery and Precision Medicine[J]. China Biotechnology, 2019, 39(2): 90-100.
[8] GAO Hong-tao, GUO Xiao-wei, SUN Dan, XIE Chang-rui, WANG Fa-wei, LI Hai-yan. Extraction of Camelina Seed Oil Body and Analysis of Stability[J]. China Biotechnology, 2017, 37(9): 98-104.
[9] SONG Li-jie, WANG Li, YANG Chuan-hong, LAI Huang-wen, WANG Jie. Effect of Cas9 Protein on Biological and Ultrastructural Characteristics of the Human Bone-seeking Breast Cancer Cell Line[J]. China Biotechnology, 2016, 36(7): 1-6.
[10] WEI Jin-mei, FAN Xiao-qin, XIONG Hai-ting, GAO Xue-juan, LIU Xiao-hui, LIU Lang-xia. hnRNPK Interacts with Nef and Facilitates the Cell Surface Expression of CD4[J]. China Biotechnology, 2015, 35(4): 17-22.
[11] WEN Ye, TANG Shao-jun, XIAO Rong, HUANG Tong-long, LEI Liang-huan, DING Xue-zhi, XIA Li-qiu. Separation and Evaluation of Anticancer Components from Myxococcus Macrosporus STXZ54[J]. China Biotechnology, 2014, 34(9): 63-71.
[12] GONG Chao-Qun, CA Ji-Ye, GAO Shi-Juan, WANG Qiu-Lan, JIN Hua. The Process of Coculturing Peripheral Blood Mononuclear Cells and Human Umbilical Cord Derived Mesenchymal Stem Cells Observed with Atomic Force Microscope[J]. China Biotechnology, 2010, 30(08): 6-12.
[13] Jian Liu Xujun Yuan . A Novel In-situ Microscope Applied in Biochemical Reactor[J]. China Biotechnology, 2008, 28(8): 100-104.
[14] . Localization of hepatitis B surface antigen within recombinant CHO cells in response to dimethyl sulfoxide[J]. China Biotechnology, 2008, 28(2): 16-20.
[15] . Effects of Serum Deprivation,Confluence and Cycloheximide[J]. China Biotechnology, 2008, 28(12): 57-61.