Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (7): 71-78    DOI: 10.13523/j.cb.20190710
    
Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier
Heng ZHU1,2,Hai-jiao LIN1,2,Ji-fu ZHANG3,Yun ZHANG1,Ai-jun SUN1,Yun-feng HU1,**()
1 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China
2 University of Chinese Academy of Sciences,Beijing 100049,China
3 Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120,China
Download: HTML   PDF(1041KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Covalent binding is one important immobilization method of industrial enzyme, which uses stable covalent bonds to immobilize industrial enzymes, creates multi-point covalent connections between carrier and enzyme, and prepares immobilized enzymes with good stability and possesses practical application value. Marine Candida rugosa lipase was immobilized using amino carrier through covalent binding method and relative inexpensive glutaraldehyde was used as the crosslinking reagent. By using single factor and orthogonal experiment, the optimal immobilization conditions were determined as follows:25℃, pH5.0,0.1% glutaraldehyde,0.25g carrier, crosslinked 0.5h,immobilization time 1h, enzyme loading 800U, with the final obtained enzyme activity being 83.01U/g. Compared with free enzyme, the optimal pH of immobilized lipase was shifted to alkaline direction, the optimal reaction temperature was increased by 10℃, the thermal stability and acid-alkali stability of immobilized enzyme were better than that of free enzyme, and the reusability and storage stability were better than that of free enzyme. Meanwhile, crosslinking agent was found to be an important factor in the preparation of immobilized lipase. Thus it is of great significance to explore new crosslinking agent to improve immobilization effect. A good foundation for the immobilization technique and industrial application of marine candida rugosa lipase were laid.



Key wordsAmino carrier      Lipase      Glutaraldehyde      Covalent crosslinking      Immobilized enzyme     
Received: 29 December 2018      Published: 05 August 2019
ZTFLH:  Q814.2  
Corresponding Authors: Yun-feng HU     E-mail: yunfeng.hu@scsio.ac.cn
Cite this article:

Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier. China Biotechnology, 2019, 39(7): 71-78.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190710     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I7/71

Fig.1 Optimization of the immobilization conditions of lipase (a) Effect of carrier volume on immobilized enzyme activity (b) Effects of temperature on immobilized enzyme activity (c) Effect of pH on immobilized enzyme activity (d) Effect of glutaraldehyde volume fraction on immobilized enzyme activity (e) Effect of crosslinking time on immobilized enzyme activity (f) Effect of immobilized time on immobilized enzyme activity
Fig. 2 Characterization of enzymatic properties of immobilized lipase and free lipase (a) Comparison of the optimum reaction temperature of free enzymes and immobilized enzymes (b) Comparison of the optimum reaction pH of free enzymes and immobilized enzymes (c) Comparison of the thermal stability of free enzymes with immobilized enzymes (d) Comparison of the stability of free enzymes with immobilized enzymes (e) Effects of the number of immobilized enzyme uses on catalytic capacity (f) Changes in enzyme activity within one months of preservation at 4℃ and room temperature
序号 载体量(g) 固定化时间(h) 温度(℃) pH 酶活(U/g) 相对酶活(%)
1 0.25 1 25 5 83.010 752 9 100
2 0.25 2 30 6 59.704 299 32 71.923 57
3 0.25 3 35 7 35.725 805 37 43.037 56
4 0.5 1 30 7 48.413 977 89 58.322 54
5 0.5 2 35 5 38.360 214 51 46.211 14
6 0.5 3 25 6 51.881 718 44 62.5
7 0.75 1 35 6 58.602 152 16 70.595 86
8 0.75 2 25 7 45.000 000 69 54.209 85
9 0.75 3 30 5 47.338 710 9 57.027 2
K1 178.440 9 190.026 9 179.892 5 170.188 2
K2 138.655 9 143.064 5 155.457 168.709 7
K3 150.940 9 134.946 2 132.688 2 129.139 8
R 27.499 99 55.080 65 47.204 3 41.048 39
Table 1 Results and analysis of orthogonal experiments for the condition optimization of immobilized lipase
[1]   李丽娟, 马贵平, 赵林果 . 固定化酶载体研究进展. 中国生物工程杂志, 2015,35(11):105-113.
[1]   Li L J, Ma G P, Zhao L G . Research progress of immobilized enzyme carrier. China Biotechnology, 2015,35(11):105-113.
[2]   魏雪, 孙丽超, 李淑英 , 等. 脂肪酶的固定化及其在食品领域的应用. 生物技术通报, 2016,32(11):59-64.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.008
[2]   Wei X, Sun L C, Li S Y , et al. Immobilization of lipase and its application in food field. Biotechnology Bulletin, 2016,32(11):59-64.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.008
[3]   张洪真 . 海绵共附生微生物脂肪酶产生菌筛选、培养基优化、酶学性质及基因克隆研究. 上海:上海交通大学, 2008.
[3]   Zhang H Z . Screening,optimization of medium,property and gene cloning of lipase from bacteria associated with marine sponge. Shanghai:Shanghai Jiaotong University, 2008.
[4]   冯超, 蒋丽娟, 黎继烈 , 等. 固定化脂肪酶研究进展. 食品工业科技, 2011,32(2):373-375,378.
[4]   Feng C, Jiang L J, Ji J J , et al. Research progress in lipase immobilization. Science and Technology of Food Industry, 2011,32(2):373-375,378.
[5]   Cheng J, Zhuang W, Tang C L , et al. Efficient immobilization of AGE and NAL enzymes onto functional amino resin as recyclable and high-performance biocatalyst. Springer Berlin Heidelberg, 2017,40(3):331-340.
[6]   游金坤, 余旭亚, 赵鹏 . 吸附法固定化酶的研究进展. 化学工程, 2012,40(4):1-5.
[6]   You J K, Yu X Y, Zhao P . Progress and trend of adsorption-based enzyme immobilization. Chemicall Engineering( China), 2012,40(4):1-5.
[7]   Azevedo A M, Vojinović V, Cabral J M S , et al. Operational stability of immobilised horseradish peroxidase in mini-packed bed bioreactors. Elsevier B V, 2004,28(2):121-128.
[8]   Ding L, Yao Z H, Li T , et al. Synthesis of macroporous polymer carrier and immobilization of papain. Iranian Polymer Journal, 2003,12(6):491-495.
[9]   高贵, 韩四平, 王智 , 等. 国内脂肪酶研究状况分析. 生物技术通讯, 2003,14(6):543-545.
[9]   Gao G, Han S P, Wang Z , et al. Analysis of lipase research situation in China. Letters in Biotechnology, 2003,14(6):543-545.
[10]   Jakub Z, Anne S.M, Teofil J . et al. A general overview of support materials for enzyme immobilization:characteristics,properties,practical utility. MDPI, 2018,8(2):1-27.
[11]   尹春丽, 曹珊珊, 许乐 , 等. 氨基树脂固定化S-腺苷甲硫氨酸合成酶的研究. 化学与生物工程, 2014,31(9):17-20.
[11]   Yin C L, Cao S S, Xu L , et al. Reseach of the immobilized enzyme of s-adenosine methionine by amino resin. Chemical and Bioengineering, 2014,31(9):17-20.
[12]   张丰华, 孙宁, 张伟 , 等. 环氧基和氨基树脂固定化β-半乳糖苷酶的比较研究. 中国农业科技导报, 2014,16(5):47-52.
[12]   Zhang F N, Sun N, Zhang W , et al. Comparison of epoxy and amino resin carrier in immobilization of β-galactosidase. Journal of Agricultural Science and Technology, 2014,16(5):47-52.
[13]   Li R Y, Fu G M, Liu C M , et al. Tannase immobilisation by amino-functionalised magnetic Fe3O4 -chitosan nanoparticles and its application in tea infusion. International Journal of Biological Macromolecules, 2018,114:1134-1143.
doi: 10.1016/j.ijbiomac.2018.03.077
[14]   Huang J, Liu C, Xiao H Y , et al. Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization. International Journal of Nanomedicine, 2008,2(4):84-775.
[15]   Adinarayana K, Iraj G, Susana C , et al. Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochemistry, 2008,43(2):169-178.
doi: 10.1016/j.procbio.2007.11.009
[16]   Katja G, Anke K, Thomas M , et al. Novel immobilization routes for the covalent binding of an alcohol dehydrogenase from rhodococcus ruber DSM 44541. Tetrahedron: Asymmetry, 2008,19(10):1171-1173.
doi: 10.1016/j.tetasy.2008.04.034
[17]   Dae Y K, Joon S R . A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. Jaocs, 1986,63(1):89-92.
doi: 10.1007/BF02676129
[18]   李晔 . 酶的固定化及其应用. 分子催化, 2008,22(1):86-96.
[18]   Li Y . Immobilization of enzymes and their applications. Journal of Molecular Catalysis (China), 2008,22(1):86-96.
[19]   Prlainovic N Z, Knezevic-Jugovic Z D, Mijin D Z , et al. Immobilization of lipase from candida rugosa on sepabeads(?): the effect of lipase oxidation by periodates. Bioprocess and Biosystems Engineering, 2011,34(7):10-803.
[20]   闻臻臻 . 假丝酵母产脂肪酶固定化研究. 杭州:浙江工业大学, 2011.
[20]   Wen Z Z . The immobilization of candida lipase. Hangzhou: Zhejiang University of Technology, 2011.
[21]   罗文, 谭天伟, 袁振宏 , 等. 多孔玻璃珠固定化脂肪酶及其催化合成生物柴油. 现代化工, 2007,27(11):40-42.
[21]   Luo W, Tan T W, Yuan Z H , et al. Immobilization of lipase by controlled pore glass and its applicationin biodiesel synthesis. Modern Chemical Industry, 2007,27(11):40-42.
[22]   Zang X Z, Xie W L . Enzymatic interesterification of soybean oil and methyl stearate blends using lipase immobilized on magnetic Fe3O4/SBA-15 composites as a biocatalyst. Journal of Oleo Science, 2014,63(10):1027-1034.
doi: 10.5650/jos.ess14089
[23]   Mohammad K, Mohammad K, Ayyoob A . Evaluation of biodiesel production using lipase immobilized on magnetic silica nanocomposite particles of various structures. Biochemical Engineering Journal, 2013,79(2013):267-273.
doi: 10.1016/j.bej.2013.09.001
[1] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[2] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[3] YANG Yun-song,LIANG Jin-hua,YANG Xiao-rui,MA Yi-ming,JIN Shuang,SUN Yao-yao,ZHU Jian-liang. Research Progress in Oxidative Desulfurization of Diesel Oil Catalyzed by Enzymes[J]. China Biotechnology, 2021, 41(10): 109-115.
[4] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[5] DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate[J]. China Biotechnology, 2020, 40(4): 49-58.
[6] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[7] Feng-qin GONG,Qi-shun LIU,Hai-dong TAN,hua JIN,Cheng-yu TAN,Heng YIN. Immobilization of 5-Hydroxymethylfurfural Oxidase within MOFs for Catalysis[J]. China Biotechnology, 2019, 39(6): 41-47.
[8] Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. The Effective of Additives on the Immobilization of Lipase by Microporous Absorbent Resin[J]. China Biotechnology, 2019, 39(4): 38-51.
[9] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[10] Hong-qiu SHI,Dai-ming ZHA,Bing-huo ZHANG,Han-quan LI. Research Advances in Whole-cell Lipases[J]. China Biotechnology, 2018, 38(11): 51-58.
[11] YANG Jian-wei, XUE Zheng-lian, ZHU Hao, YANG Meng, WANG Zhou. Study on the Mutagenic Effect of Phospholipase A1 Recombinant Plasmid by ARTP[J]. China Biotechnology, 2017, 37(6): 78-85.
[12] Shan XU,Ren-qiang LI,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng Hu. Ethylene Glycol Diglycidyl Ether Cross-linked with Sodium Alginate- carboxymethyl Cellulose to Immobilize Lipase[J]. China Biotechnology, 2017, 37(12): 77-83.
[13] LI Shuai, SHAN Hong-yu, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. The Role of Phosphoinositide Phospholipase C in Expression Regulation of DREB2[J]. China Biotechnology, 2016, 36(4): 110-115.
[14] CAO Ying-ying, DENG Dun, ZHANG Yun, SUN Ai-jun, XIA Fang-liang, HU Yun-feng. Cloning, Expression and Characterization of a Novel Psychrophile Lipase from the Deep Sea of the South China Sea[J]. China Biotechnology, 2016, 36(3): 43-52.
[15] ZHOU Yong, XU Gang, YANG Li-rong, WU Jian-ping. Effects of Signal Peptides's Optimization on the Secretion of Lipase S in Bacillus subtilis[J]. China Biotechnology, 2015, 35(9): 42-49.