Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (6): 41-47    DOI: 10.13523/j.cb.20190606
    
Immobilization of 5-Hydroxymethylfurfural Oxidase within MOFs for Catalysis
Feng-qin GONG1,2,Qi-shun LIU2,Hai-dong TAN2,hua JIN3,Cheng-yu TAN1,**(),Heng YIN2,**()
1 College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China
2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, Dalian 116023, China
3 College of Material and Engineering, Ningbo University, Ningbo 315211, China
Download: HTML   PDF(1034KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Immobilized enzymes are biocatalysts that typically have higher functional efficiency and reproducibility than free enzymes. However, the use of enzyme immobilization is still limited, and the research is mainly conducted within model enzymes. In recent years, the study of metal organic frameworks (MOFs) as enzyme immobilization carriers has attracted great attention, and the nature of MOF-enzyme complexes remains to be elucidated. In the present study, a novel immobilized biocatalyst was prepared by embedding a 5-hydroxymethylfurfural oxidase (HMFO) in zeolite imidazole ester skeleton ZIF-8(a typical MOF) through biomimetic mineralization. The morphology of the composite catalyst under scanning electron microscope was different from the classical rhombohedral dodecahedron of MOF immobilized enzyme. Protein concentration assay conducted by Commassie brilliant blue G-250 method indicated that the immobilization efficiency was reached 89.0%. Moreover, the conversion efficiency of HMFO@ZIF-8 to 5-hydroxymethylfurfural reached 84.3%, and the yield and selectivity were significantly improved as compared to free HMFO.New knowledge for the research of MOFs immobilized enzymes and facilitates the development of immobilized biomacromolecules and synthetic biocatalysts were provided.



Key wordsMOFs      5-Hydroxymethylfurfural oxidase      Immobilized enzyme      Biocatalyst     
Received: 30 October 2018      Published: 12 July 2019
ZTFLH:  Q814  
Corresponding Authors: Cheng-yu TAN,Heng YIN     E-mail: tanchyu@dlou.edu.cn;yinheng@dicp.ac.cn
Cite this article:

Feng-qin GONG,Qi-shun LIU,Hai-dong TAN,hua JIN,Cheng-yu TAN,Heng YIN. Immobilization of 5-Hydroxymethylfurfural Oxidase within MOFs for Catalysis. China Biotechnology, 2019, 39(6): 41-47.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190606     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I6/41

Fig.1 The HMFO loading in ZIF-8
Fig.2 SDS-PAGE analysis of HMFO and HMFO@ZIF-8 M: Western blot marker; 1: Free HMFO; 2: HMFO@ZIF-8; 3: The supernatant of HMFO@ZIF-8
Fig.3 Confocal microscopy image of the FITC-HMFO@ZIF-8
Fig.4 SEM images of the HMFO@ZIF-8 (a) and BSA@ZIF-8 (b)
Fig.5 Effects of different concentrations of 2-methylimidazole on HMFO activity
Fig.6 Effects of different concentrations of zinc acetate on HMFO activity
Fig.7 The conversion chromatogram of HMF by HMFO and HMFO@ZIF-8 A: HMFO@ZIF-8,20mmol/L PBS buffer solution; B: HMFO@ZIF-8, aqueous solution; C: Free HMFO, 20mmol/L PBS buffer solution
Fig.8 Standard curve drawing of each compound
Enzyme Time(h) HMF conversion (%) DFF yield (%) FFA yield (%)
A 85.0 84.3 64.1 17.7
B 85.0 33.8 32.3 1.5
C 85.0 100.0 0.0 71.7
Table 1 The conversion rate of HMF by HMFO@ZIF-8
[1]   Stepankova V, Bidmanova S, Koudelakova T , et al. Strategies for stabilization of enzymes in organic solvents. ACS Catalysis, 2013,3(12):2823-2836.
doi: 10.1021/cs400684x
[2]   Cantone S, Ferrario V, Corici L , et al. Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev, 2013,42(15):6262-6276.
doi: 10.1039/c3cs35464d
[3]   Ke C, Fan Y, Su F , et al. Recent advances in enzyme immobilization. Chinese Journal of Biotechnology, 2018,34(2):188-203.
[4]   Majewski M B, Howarth A J, Li P , et al. Enzyme encapsulation in metal-organic frameworks for applications in catalysis. Crystengcomm, 2017,19(29):4082-4091.
doi: 10.1039/C7CE00022G
[5]   李梦腊, 毛洪丽, 黄志强 . 智能固定化酶载体的研究进展. 工业微生物, 2018,48(3):46-54.
[5]   Li M L, Mao H L, Huang Z Q , et al. Research progress of intelligent immobilized enzyme carriers. Industrial Microbiology, 2018,48(3):46-54.
[6]   Kahn J S, Freage L, Enkin N , et al. Stimuli-responsive DNA-functionalized metal-organic frameworks (MOFs). Adv Mater, 2017,29(6):1602782.
doi: 10.1002/adma.201602782
[7]   Zhuang J, Kuo C H, Chou L Y , et al. Optimized metal-organic-framework nanospheres for drug delivery evaluation of small molecule encapsulation. ACSNano, 2014,8(3):2812-2819.
[8]   Patricia H, Ruxandra G, Tarek B . Metal-organic frameworks in biomedicine. Chem Rev, 2012,112(2):1232-1268.
doi: 10.1021/cr200256v
[9]   Meek S T, Greathouse J A, Allendorf M D . Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater, 2011,23(2):249-267.
doi: 10.1002/adma.201002854
[10]   Wang X, Makal T A, Zhou H C . Protein immobilization in metal-organic frameworks by covalent binding. Australian Journal of Chemistry, 2014,67(11):1629-1631.
doi: 10.1071/CH14104
[11]   Vranish J N, Ancona M G, Oh E , et al. Enhancing coupled enzymatic activity by conjugating one enzyme to a nanoparticle. Nanoscale, 2017,9(16):5172-5187.
doi: 10.1039/C7NR00200A
[12]   田运奇, 吴小芳, 侯文颖 . 辣根过氧化物酶在MOF上的固定化研究. 辽宁师范大学学报(自然科学版), 2016,39(3):373-376.
[12]   Tian Y Q, Wu X F, Hou W Y , et al. Immobilization of horseradish peroxidase on the metal-organic framework. Journal of Liaoning Normal University, 2016,39(3):373-376.
[13]   Wu X, Yang C, Ge J . Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing solvents. Bioresources and Bioprocessing, 2017,4(1):24.
doi: 10.1186/s40643-017-0154-8
[14]   Jin H, Li Y, Liu X , et al. Recovery of HMF from aqueous solution by zeolitic imidazolate frameworks. Chemical Engineering Science, 2015,124:170-178.
doi: 10.1016/j.ces.2014.07.017
[15]   Dijkman W P, Fraaije M W . Discovery and characterization of a 5-hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688. Applied and Environmental Microbiology, 2014,80(3):1082-1090.
doi: 10.1128/AEM.03740-13
[16]   陈英波, 赵林飞, 彪王 . 沸石咪唑骨架材料(ZIF-8)的结构生长过程. 天津工业大学学报, 2016,35(5):1-4.
[16]   Chen Y B, Zhao L F, Wang B , et al. Structural evolution of zeolitic imidazolate framework-8 (ZIF-8). Journal of Tianjin Polytechnic University, 2016,35(5):1-4.
[17]   Dijkman W P, Binda C, Fraaije M W , et al. Structure-based enzyme tailoring of 5-hydroxymethylfurfural oxidase. ACS Catalysis, 2015,5(3):1833-1839.
doi: 10.1021/acscatal.5b00031
[18]   邢丹, 马铭鸿, 吴航伸 . CotA漆酶的固定化及其对溴麝香草酚蓝脱色的效果. 东北林业大学学报, 2017,45(10):40-43,48.
[18]   Xing D, Ma M H, Wu H S , et al. Immobilization of CotA laccase and decoloring bromothymol blue. Journal of Northeast Forestry University, 2017,45(10):40-43,48.
[19]   Cherian E, Dharmendirakumar M, Baskar G . Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chinese Journal of Catalysis, 2015,36(8):1223-1229.
doi: 10.1016/S1872-2067(15)60906-8
[20]   Liang K, Ricco R, Doherty C M , et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications, 2015,6:7240.
[21]   Hu Y, Dai L, Liu D , et al. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs). Renewable and Sustainable Energy Reviews, 2018,91:793-801.
doi: 10.1016/j.rser.2018.04.103
[22]   Chheda J N, Huber G W, Dumesic J A . Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed Engl, 2007,46(38):7164-7183.
doi: 10.1002/(ISSN)1521-3773
[23]   王军, 张春鹏, 欧阳平凯 . 5-羟甲基糠醛制备及应用的研究进展. 化工进展, 2008,27(5):702-707.
[23]   Wang J, Zhang C P, Ou yang P K . Advances in production and application of 5-hydroxymethyl furfural. Chemical Industry and Engineering Progress, 2008,27(5):702-707.
[24]   郑路凡, 杜泽学, 宗保宁 . 催化合成典型5-羟甲基糠醛衍生物的研究进展. 化工进展, 2015,34(6):1511-1518.
doi: 10.16085/j.issn.1000-6613.2015.06.002
[24]   Zheng L F, Du Z X, Zong B N . Progress of catalytic synthesis of typical 5-hydroxymethyl furfural derivatives. Chemical Industry & Engineering Progress, 2015,34(6):1511-1518.
doi: 10.16085/j.issn.1000-6613.2015.06.002
[25]   Dijkma W P, Groothuis D E, Fraaije M W . Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew Chem Int Ed Engl, 2014,53(25):6515-6518.
doi: 10.1002/anie.201402904
[1] YANG Yun-song,LIANG Jin-hua,YANG Xiao-rui,MA Yi-ming,JIN Shuang,SUN Yao-yao,ZHU Jian-liang. Research Progress in Oxidative Desulfurization of Diesel Oil Catalyzed by Enzymes[J]. China Biotechnology, 2021, 41(10): 109-115.
[2] DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate[J]. China Biotechnology, 2020, 40(4): 49-58.
[3] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[4] Jian-xiu LI,Xian-rui CHEN,Xiao-ling CHEN,Yan-yan HUANG,Qi-wen MO,Neng-zhong XIE,Ri-bo HUANG. Construct Whole-cell Biocatalyst and Produce (S)-Acetoin via Synthetic Biology Strategy[J]. China Biotechnology, 2019, 39(4): 60-68.
[5] Yue WANG,Jiang-hua LI,Guo-cheng DU,Long LIU. Molecular Modification of L-amino Acid Deaminase and Optimization of α-ketoglutaric Acid Production by Whole-cell Biocatalysis[J]. China Biotechnology, 2019, 39(3): 56-64.
[6] Shan XU,Ren-qiang LI,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng Hu. Ethylene Glycol Diglycidyl Ether Cross-linked with Sodium Alginate- carboxymethyl Cellulose to Immobilize Lipase[J]. China Biotechnology, 2017, 37(12): 77-83.
[7] LI Li-juan, MA Gui-ping, ZHAO Lin-guo. Research Progress of Immobilized Enzyme Carriers[J]. China Biotechnology, 2015, 35(11): 105-113.
[8] TANG Cun-duo, SHI Hong-ling, TANG Qing-hai, JIAO Zhu-jing, KAN Yun-chao, WU Min-chen, LI Jian-fang. Recent Trends in Discovery and Protein Engineering of Biocatalysts[J]. China Biotechnology, 2014, 34(9): 113-121.
[9] LI Xiao-dong, YANG Na, WAN Yong-hu, WU Jia, JIA Dong-chen, QIAO Min. Cell Surface Engineering of Yeast Application in Biofuel[J]. China Biotechnology, 2012, 32(08): 107-110.
[10] ZENG Zhen, YANG Jun-fang, YANG Cheng-li, WANG Peng, LI Da-li. Cloning and Expression of S-mandelate Dehydrogenase Gene[J]. China Biotechnology, 2012, 32(02): 29-32.
[11] HUANG Zhe Tao ZHANG Zhang-lin LIN. Immobilization of β-glucosidase with nano SiO2 and its application in soybean isoflavone hydrolysis in two-phase-system[J]. China Biotechnology, 2008, 28(6): 71-76.
[12] . Technologies for Surface Display of Lipase and its Application[J]. China Biotechnology, 2007, 27(9): 97-102.
[13] . Advance on the Biotransformation of Bioactive Natural Leading Compounds[J]. China Biotechnology, 2007, 27(9): 110-115.
[14] . Cross-linked Enzyme Aggregates and advances[J]. China Biotechnology, 2006, 26(0): 0-0.