Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (4): 60-68    DOI: 10.13523/j.cb.20190408
    
Construct Whole-cell Biocatalyst and Produce (S)-Acetoin via Synthetic Biology Strategy
Jian-xiu LI1,2**,Xian-rui CHEN1**,Xiao-ling CHEN1,Yan-yan HUANG1,Qi-wen MO1,Neng-zhong XIE1,2***(),Ri-bo HUANG1,2***()
1 National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Energy and Enzyme Technology, and Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
2 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science andTechnology, Guangxi University, Nanning 530004, China
Download: HTML   PDF(1059KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: The whole-cell biocatalyst, overexpressing diacetyl reductase (DAR) and introduced in situ-NADH regeneration systems was applied to improve (S)-acetoin production from prochiral diacetyl.Methods: The gene encoding DAR from Paenibacillus polymyxa was cloned and expressed in Escherichia coli. Recombine DAR was purified by HiTrap TALON affinity chromatography, then enzyme activities and molecular kinetic parameters of purified DAR were measured. NADH in situ regeneration system based on glucose dehydrogenase (GDH) from Bacillus subtilis was introduced. The whole-cell biocatalyst, overexpressing DAR and GDH was applied to (S)-acetoin produce and the reaction conditions were optimized.Results: DAR showed a high catalytic efficiency and enantioselective (enantiomeric purity 95.86%). The Km, Vmax and Kcat values of DAR for diacetyl were 2.59mmol/L, 1.64μmol/(L·min·mg) and 12.3/s, respectively. The whole-cell biocatalyst, introduced in situ-NADH regeneration systems resulted in higher (S)-acetoin concentration, productivity and yield form diacetyl. Under optimal conditions in fed-batch bioconversion, 51.26g/L (S)-acetoin was produced from 63g/L diacetyl with a productivity of 5.13g/(L·h).Conclusion: The compound of prochiral diacetyl was used as substrate for asymmetric synthesis of high value chiral (S)-acetoin. The results demonstrated that whole-cell biocatalyst, introduced in situ-NADH regeneration systems, can effectively improve the production of (S)-acetoin with good applicability and economic performance.



Key wordsWhole-cell biocatalyst      Cofactor regeneration      Diacetyl reductase      (S)-Acetoin     
Received: 08 October 2018      Published: 08 May 2019
ZTFLH:  Q819  
Corresponding Authors: Neng-zhong XIE,Ri-bo HUANG     E-mail: xienengzhong@gxas.cn;guruace@gxas.cn
Cite this article:

Jian-xiu LI,Xian-rui CHEN,Xiao-ling CHEN,Yan-yan HUANG,Qi-wen MO,Neng-zhong XIE,Ri-bo HUANG. Construct Whole-cell Biocatalyst and Produce (S)-Acetoin via Synthetic Biology Strategy. China Biotechnology, 2019, 39(4): 60-68.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190408     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I4/60

Strains, plasmids and primers Feature or sequence Source
Strains Feature
P. polymyxa DSM 365 Mutant 本实验室选育
B. subtilis 168 ATCC 27370 本实验室保存
E. coli DH5α supE44lacU169 (φ80 lacZM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1 Novagen
E. coli BL21(DE3) F- ompT hsdSB (rB-mB-) gal (λ c I 857 ind1 Sam7 nin5 lacUV5 T7gene1) dcm (DE3) Novagen
E. coli BL21(DE3)-pETDuet E. coli BL21(DE3)carrying pETDuet-1 This study
E. coli BL21(DE3)-DAR E. coli BL21(DE3) carryingpETDuet-dar This study
E. coli BL21(DE3)-DAR/GDH E. coli BL21(DE3) carryingpETDuet-dar/gdh This study
Plasmids Feature
pETDuet-1 Overexpression vector; Ampr Novagen
pETDuet-dar dar in pETDuet-1 This study
pETDuet-dar/gdh dar and gdh in pETDuet-1 This study
Primers Sequence
P1 (dar- BamH I-F) 5'- CGCGGATCCGGAACTTAAGAATAAAACAGC -3'
P2 (dar- Hind III-R) 5'- CCCAAGCTTCTACTGTGGGTTGGTTGT -3'
P3 (gdh-Nde I-F) 5'-GGAATTC CATATG TATCCGGATTTAAAAGG-3'
P4 (gdh-Aat II-R) 5'-TATCCA GACGTC TTAACCGCGGCCTGC-3'
Table1 Strains,plasmids and primers
Fig.1 Identification of the recombinant plasmid by enzyme digestion (a) Lane 1: pETDuet-dar digested by BamH I; Lane 2: pETDuet-dar digested by BamH I and Hind III; M1: Marker IV; M2: Marker DL2000 (b) M1: Marker DL2000; M2: Marker IV; Lane 1: pETDuet-dar/gdh digested by Nde I; Lane 2: pETDuet-dar/gdh digested by Nde I and Aat II
Fig.2 SDS-PAGE analysis of DAR and GDH expressed in E. coli BL21(DE3) and the purified recombinant DAR M: Marker; Lane 1: E. coli BL21(DE3)-pETDuet; Lane 2: E. coli BL21(DE3)-DAR; Lane 3: E. coli BL21(DE3)-DAR/GDH; Lane 4: Purified recombinant DAR
菌株 丁二酮(g/L) 乙偶姻(g/L) 生产速率 [g/(L·h)]
E. coli BL21(DE3)-pETDuet 14.35 ± 0.28 ND* ND
E. coli BL21(DE3)-DAR 12.72 ± 0.05 2.21 ± 0.33 0.74 ± 0.11
E. coli BL21(DE3)-DAR/GDH 9.76 ± 0.39 5.03 ± 0.48 1.68 ± 0.16
Table 2 The products of batch bioconversion with whole-cell biocatalyst
Fig.3 Optimization of biocatalysis conditions (a) Concentration of recombinant (b) pH (c) Temperature (d) Ratio of glucose to diacetyl (e) Shaking speeds (f) Concentration of diacetyl
Fig. 4 Fed-batch bioconversions under optimal condition ▲:Acetoin; ●:Diacetyl; ○:Glucose
[1]   Xiao Z J, Lu J R . Strategies for enhancing fermentative production of acetoin: A review. Biotechnol Adv, 2014,32(2):492-503.
doi: 10.1016/j.biotechadv.2014.01.002 pmid: 24412764
[2]   Xiao Z J, Lu J R . Generation of acetoin and its derivatives in foods. J Agric Food Chem, 2014,62(28):6487-6497.
doi: 10.1021/jf5013902 pmid: 25000216
[3]   Gao C, Zhang L, Xie Y , et al. Production of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent carbonyl reductase and glucose dehydrogenase. Bioresour Technol, 2013,137(6):111-115.
doi: 10.1016/j.biortech.2013.02.115 pmid: 23587814
[4]   Werpy T A, Petersen G . Top value added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas. Tennessee: US Department of Energy, 2004, 6-12.
doi: 10.2172/926125
[5]   Zhang L Y, Singh R S, Sivakumar D , et al. An artificial synthetic pathway for acetoin, 2,3-butanediol, and 2-butanol production from ethanol using cell free multi-enzyme catalysis. Green Chemistry, 2018,20(1):230-242.
doi: 10.1039/C7GC02898A
[6]   甄德帅 . 香料乙偶姻(3-羟基-2-丁酮)化学工艺合成现状. 黔南民族师范学院学报, 2015,35(4):121-124.
doi: 10.3969/j.issn.1674-2389.2015.04.032
[6]   Zhen D S . On the current chemical synthesis techniques of acetoin flavor. Journal of Qiannan Normal College for Nationalities, 2015,35(4):121-124.
doi: 10.3969/j.issn.1674-2389.2015.04.032
[7]   Xiao Z J, Liu P H, Qin J Y , et al. Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolyzate. Appl Microbiol Biotechnol, 2007,74(1):61-68.
doi: 10.1007/s00253-006-0646-5 pmid: 17043817
[8]   张燎原, 洪欲强, 陈双 , 等. 以葡萄糖和木糖为双底物生物合成乙偶姻的条件优化. 化学与生物工程, 2012,29(7):30-35.
doi: 10.3969/j.issn.1672-5425.2012.07.008
[8]   Zhang L Y, Hong Y Q, Chen S , et al. Optimization of co-fermentation condition of glucose and xylose for acetoin production. Chemistry and Bioengineering, 2012,29(7):30-35.
doi: 10.3969/j.issn.1672-5425.2012.07.008
[9]   郝飞 . 枯草芽孢杆菌发酵生产乙偶姻的研究. 无锡: 江南大学, 2013.
[9]   Hao F . Improvement to acetoin fermentation technology by Bacillus subtilis CCTCC M 208157. Wuxi: Jiang Nan University, 2013.
[10]   Xu Q, Xie L, Li Y , et al. Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J Chem Technol Biotechnol, 2015,90(1):93-100.
doi: 10.1002/jctb.4293
[11]   Crout D, Littlechild J, Morrey S . Acetoin metabolism: stereochemistry of the acetoin produced by the pyruvate decarboxylase of wheat germ and by theα-acetolactate decarboxylase of Klebsiella aerogenes. [2018-10-12]..
[12]   Kochius S, Paetzold M, Scholz A , et al. Enantioselective enzymatic synthesis of the α-hydroxy ketone (R)-acetoin from meso-2,3-butanediol. J Mol Catal B Enzym, 2014,103(5):61-66.
doi: 10.1016/j.molcatb.2013.08.016
[13]   Wachtmeister J, Rother D . Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Curr Opin Biotechnol, 2016,42(6):169-177.
doi: 10.1016/j.copbio.2016.05.005 pmid: 27318259
[14]   Xie N Z, Li J X, Song L F , et al. Genome sequence of type strain Paenibacillus polymyxa DSM 365, a highly efficient producer of optically active (R,R)-2,3-butanediol. J Biotechnol, 2014,195(3):72-73.
doi: 10.1016/j.jbiotec.2014.07.441 pmid: 25450636
[15]   奥斯伯M F, 金斯顿E R, 赛德曼G J, 等. 精编分子生物学实验指南(译). 第四版. 马学军, 舒跃龙,颜子颖,等.北京: 科学出版社, 2005: 887-888.
[15]   Ausubel F M, Kingston R E, Seidman J G , et al. Short protocols in molecular biology . 4th ed. Ma X J, Shu Y L, Yan Z Y, et al. Bejing: Science Press, 2005: 887-888.
[16]   Ji X, Huang H, Ouyang P . Microbial 2,3-butanediol production: A state of the art review. Biotechnol Adv, 2011,29(3):351-364.
doi: 10.1016/j.biotechadv.2011.01.007
[17]   Häβler T, Schieder D, Pfaller R , et al. Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour Technol, 2012,124(11):237-244.
doi: 10.1016/j.biortech.2012.08.047 pmid: 22989651
[18]   Xie N Z, Chen X R, Wang Q Y , et al. Microbial routes to (2R,3R)-2,3-butanediol: Recent advances and future prospects. Curr Top Med Chem, 2017,17(21):2433-2439.
doi: 10.2174/1568026617666170504101646 pmid: 28474550
[19]   李亿, 李检秀, 刘海余 , 等. 多黏类芽孢杆菌同步糖化发酵玉米粉生产(R,R)-2,3-丁二醇. 广西科学, 2016,23(1):41-46.
[19]   Li Y, Li J X, Liu H Y , et al. Simultaneous sccharification and (R,R)-2,3-butanediol fermentation from corn flour by Paenibacillus polymyxa. Guangxi Sciences, 2016,23(1):41-46.
[20]   Gao J, Xu Y Y, Li F W , et al. Production of S-acetoin from diacetyl by Escherichia coli transformant cells that express the diacetyl reductase gene of Paenibacillus polymyxa ZJ-9. Lett Appl Microbiol, 2013,57(4):274-281.
[21]   Xiao Z, Lv C, Gao C , et al. A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals . PLoS One, 2010,5:e8860.
doi: 10.1371/journal.pone.0008860 pmid: 2811184
[22]   Yamamoto H, Mitsuhashi K, Kimoto N , et al. A novel NADH-dependent carbonyl reductase from Kluyveromyces aestuarii and comparison of NADH-regeneration system for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate. Biosci Biotechnol Biochem, 2004,68(3):638-649.
doi: 10.1271/bbb.68.638
[23]   Nina R, Markus N, Andreas L , et al. Characterization of a whole-cell catalyst co-expressing glycerol dehydrogenase and glucose dehydrogenase and its application in the synthesis of L-glyceraldehyde. Biotechnol Bioeng, 2010,106(4):541-552.
doi: 10.1002/bit.22714 pmid: 20198657
[1] LI Bing-juan, LI Yu-xia, LI Bei-ping, LING Yan, ZHOU Wei, LIU Gang, ZHANG Jing-hai, YUE Jun-jie, CHEN Hui-peng. Study of the Relationship between the Disordered C Terminusin of Formate Dehydrogenase and the Conversion Rate in the Whole-cell Catalysis of Prochiral Acetone[J]. China Biotechnology, 2013, 33(8): 1-10.
[2] LI Xiao-dong, YANG Na, WAN Yong-hu, WU Jia, JIA Dong-chen, QIAO Min. Cell Surface Engineering of Yeast Application in Biofuel[J]. China Biotechnology, 2012, 32(08): 107-110.
[3] . Technologies for Surface Display of Lipase and its Application[J]. China Biotechnology, 2007, 27(9): 97-102.