Construct Whole-cell Biocatalyst and Produce (S)-Acetoin via Synthetic Biology Strategy

Jian-xiu LI,Xian-rui CHEN,Xiao-ling CHEN,Yan-yan HUANG,Qi-wen MO,Neng-zhong XIE,Ri-bo HUANG

China Biotechnology ›› 2019, Vol. 39 ›› Issue (4) : 60-68.

PDF(1059 KB)
PDF(1059 KB)
China Biotechnology ›› 2019, Vol. 39 ›› Issue (4) : 60-68. DOI: 10.13523/j.cb.20190408

Construct Whole-cell Biocatalyst and Produce (S)-Acetoin via Synthetic Biology Strategy

Author information +
History +

Abstract

Objective: The whole-cell biocatalyst, overexpressing diacetyl reductase (DAR) and introduced in situ-NADH regeneration systems was applied to improve (S)-acetoin production from prochiral diacetyl.Methods: The gene encoding DAR from Paenibacillus polymyxa was cloned and expressed in Escherichia coli. Recombine DAR was purified by HiTrap TALON affinity chromatography, then enzyme activities and molecular kinetic parameters of purified DAR were measured. NADH in situ regeneration system based on glucose dehydrogenase (GDH) from Bacillus subtilis was introduced. The whole-cell biocatalyst, overexpressing DAR and GDH was applied to (S)-acetoin produce and the reaction conditions were optimized.Results: DAR showed a high catalytic efficiency and enantioselective (enantiomeric purity 95.86%). The Km, Vmax and Kcat values of DAR for diacetyl were 2.59mmol/L, 1.64μmol/(L·min·mg) and 12.3/s, respectively. The whole-cell biocatalyst, introduced in situ-NADH regeneration systems resulted in higher (S)-acetoin concentration, productivity and yield form diacetyl. Under optimal conditions in fed-batch bioconversion, 51.26g/L (S)-acetoin was produced from 63g/L diacetyl with a productivity of 5.13g/(L·h).Conclusion: The compound of prochiral diacetyl was used as substrate for asymmetric synthesis of high value chiral (S)-acetoin. The results demonstrated that whole-cell biocatalyst, introduced in situ-NADH regeneration systems, can effectively improve the production of (S)-acetoin with good applicability and economic performance.

Key words

Whole-cell biocatalyst / Cofactor regeneration / Diacetyl reductase / (S)-Acetoin

Cite this article

Download Citations
Jian-xiu LI, Xian-rui CHEN, Xiao-ling CHEN, et al. Construct Whole-cell Biocatalyst and Produce (S)-Acetoin via Synthetic Biology Strategy[J]. China Biotechnology, 2019, 39(4): 60-68 https://doi.org/10.13523/j.cb.20190408
由于细胞膜的选择性通透作用,在给细胞提供保护的同时,导致许多潜在的功能性生物大分子(如核酸、多肽、蛋白质)或药物被阻挡在细胞之外,这些生物大分子难以在靶标组织和器官达到足够的有效浓度。因此,这些具有功能的生物大分子在生物治疗领域中的应用受到很大的限制。随着科技的发展,目前有多种方法可将生物大分子导入到细胞内,如电穿孔法、显微注射法、穿孔素蛋白法、纳米颗粒包裹和无复制特性的病毒载体介导等[1,2]。这些方法虽然有效,但是存在导入细胞效率低、对细胞伤害性大、缺乏组织靶向性、易激发体内免疫反应、操作复杂等缺点,极大地阻碍了这类方法的推广与应用[2]。因此,如何将生物活性分子高效投递到目标细胞和组织仍然是研究人员面临的一个难题。随着早期研究人员对人类免疫缺陷病毒(human immunodeficiency virus,HIV)的转录激活因子蛋白TAT细胞穿膜肽(cell penetrating peptides, CPPs)(aa 47~57)的发现与功能的鉴定,掀起了研究CPPs的热潮[3]。CPPs又称为蛋白质转导结构域(protein transduction domains, PTDs),一般由30个左右的氨基酸残基组成,其自身可以自发进入多种细胞,而且可有效地携带DNA、RNA、蛋白质、荧光素、功能多肽和药物进入细胞发挥治疗作用。因其具备安全、高效、穿膜细胞目标广泛和避免机体免疫反应产生的特点,是近30年来快速发展的一类新型外源基因或药物传导载体[4]。因此,本文综述了CPPs介导不同的功能分子在抗肿瘤治疗领域中的研究进展,以期为抗肿瘤治疗策略提供新的参考。

1 CPPs的分类

目前,已有100多种CPPs的功能被研究证实和申请了专利。根据CPPs的理化特性可以将其分为3类:阳离子型、疏水型和两性分子型。根据其来源可将其分为天然存在型和人工合成型。富含带正电荷碱性氨基酸的TAT短肽和寡聚精氨酸是阳离子型CPPs的典型代表,而且TAT是目前应用最为广泛的阳离子型CPPs之一[5]。研究表明,决定阳离子型CPPs穿膜功能的两个关键特征是带正电荷碱性氨基酸的存在和其α螺旋的二级结构[5]。组成阳离子型CPPs的氨基酸主要有组氨酸、精氨酸、鸟氨酸等[6],其中以精氨酸残基最具潜力,既然精氨酸残基的存在对阳离子型CPPs穿膜功能至关重要,多聚精氨酸就被人工合成(从R3到R12)用于研究其穿膜潜力。结果发现,以仅有精氨酸残基为基础的阳离子型CPPs最少有6个精氨酸残基(R6)才有穿膜能力[7]。精氨酸的存在对穿膜能力固然重要,但以精氨酸为基础的CPPs所含精氨酸残基数目具有一定的阈值,精氨酸与赖氨酸的同源多聚物中多于12个残基后会降低其传导效率[8]。而且,阳离子型CPPs只是精氨酸残基所占比例较大,仅有连续的精氨酸残基所合成的短肽,如R11 (RRRRRRRRRRR) 具有一定的细胞毒性[9]。α螺旋二级结构的存在除可以维持CPPs的结构稳定性外,还在其穿膜过程起到了重要作用[10]。α螺旋可以在细胞膜上形成孔道,两亲性α螺旋其表面的疏水性(非极性)氨基酸与细胞膜的磷脂分子相互作用,内部的亲水性(极性)氨基酸形成孔道,从而实现穿膜[11]。另外,富含精氨酸的核定位信号肽序列(nuclear localization sequences,NLS)是一类特殊的天然阳离子型CPPs[9]。核定位序列是蛋白质的一个结构域,通常由10个左右的氨基酸组成序列,含有脯氨酸、赖氨酸和精氨酸,它能与入核载体相互作用,使蛋白质能被运进细胞核[12]。有些病毒蛋白的NLS多由带正电荷的碱性氨酸残基(如精氨酸和赖氨酸)组成,因此具有开发为CPPs的潜力。例如,研究者Yu等[13]通过生物信息学分析发现猪圆环病毒2型的Cap蛋白N端NLS序列区富含精氨酸残基(aa 1~40),认为该段序列具有细胞穿膜功能的潜力,但是经实验验证后,在其NLS序列区中仅有前17个氨基酸残基具有细胞穿膜功能。而且在此之前源于腺病毒E1A蛋白和猿猴病毒40的NLS序列肽已被证实具有CPPs功能[14]。因源于NLS序列的CPPs其氨基酸组成、数目和顺序是天然存在的,因此是一类特殊的天然型CPPs,而且并非所有NLS序列肽都具有细胞穿膜潜力,其穿膜功能需要进行实验验证。疏水型CPPs主要由具有疏水性的色氨酸、亮氨酸、异亮氨酸、苯丙氨酸、丙氨酸、甲硫氨酸和酪氨酸组成。截至目前只有少数几种疏水型CPPs的功能被鉴定出来,包括源于卡波西式肉瘤的成纤维细胞生长因子(K-FGF)、Pep-7和C105Y[15]。两亲性CPPs,顾名思义由亲水性氨基酸和疏水性氨基酸所组成。两亲性CPPs的一级和二级结构都表现出了其两亲性的特征。其一级结构基础是核定位信号肽序列和融合疏水域。例如,MPG是以SV40的NLS为基础,融合HIV的糖蛋白41疏水域形成的[16]。其他的源于天然存在蛋白质的两亲性CPPs也相继被鉴定出来,如pVEC[26]、ARF(1-22)[27]和BPrPp(1-28) [15]。二级结构依赖于极性氨基酸残基和非极性氨基酸残基分别指向一面的α螺旋空间构象[17]。富含脯氨酸的多肽是两亲性CPPs的特殊类别,它的功能基础是脯氨酸,即其脯氨酸的吡咯烷结构[18]

2 新CPPs的鉴定方法

无论是天然存在的核定位信号肽还是人工合成的候选CPPs,其功能的鉴定都可结合生物信息学和实验验证的方法。生物信息学方法主要借助在线数据库和软件的预测、模拟、分析,评价候选CPPs的穿膜潜力和空间结构[19]。最近,Hu等[20]使用在线服务器PPD 对候选CPPs的穿膜潜力进行在线评分,然后利用PEP-FOLD3预测模拟候选CPPs的空间结构,并利用PyMOL软件直观展示空间结构,最终鉴定了一种新型高效源于鸡传染性贫血病毒的细胞穿膜肽CVP1。另外,Helical Wheel Projections在线服务器可以分析候选CPPs的物理化学特性,包括其包含的亲水性和疏水性氨基酸的残基数[21]。候选CPPs进行生物信息学分析和评价以后,其细胞穿膜能力和细胞内化效率尚需要实验方法进行鉴定和验证。实验验证,最常用的方法是激光共聚焦显微镜观察和流式细胞术[22,23]。激光共聚焦显微成像可以直观地观察候选CPPs在细胞内定位和CPPs携带“货物”分子进入细胞的情况,前提是候选CPPs需要进行荧光染料的标记和修饰。值得注意的是,在进行激光共聚焦成像前对细胞进行固定处理时,会因细胞膜受损而无法准确的反映候选CPPs的细胞内化的能力和在细胞内的定位,为了避免该假阳性的现象的产生,实验过程中直接进行活细胞的显微成像[20]。流式细胞术主要用于对候选CPPs的穿膜效率、穿膜能力和穿膜机制进行分析和研究。这两种方法的结合使用可以对候选CPPs进行定性和定量的分析。

3 CPPs穿膜机制

CPPs为什么不用借助其他条件可自发进入细胞,针对CPPs穿膜机制的研究引起了研究人员的广泛关注。虽然,当前对CPPs的穿膜机制没有完全阐释清楚,但是被大家所公认的穿膜机制主要有3种[24]。第一种是直接穿透,这种穿透机制是以非能量依赖性和非受体依赖的方式入胞。此结论源于早期的研究结果,TAT短肽在4℃和37℃条件下,其穿膜效率是相同的,而且其穿膜能力不依赖于ATP [25]。第二种是胞吞介导的移位作用,这种机制不同于直接转运,它是一种能量依赖的转运方式,这种传导机制又可以进一步分为两大类: 吞噬作用和胞饮作用。吞噬作用主要发生于结构较大的颗粒货物的吸收,胞饮作用主要出现于对可溶解性货物的吸收。胞饮作用发生于各种类型的细胞中。已被报道的CPPs 所用的胞饮方式有巨胞饮、网格蛋白依赖途径、胆固醇依赖网格蛋白介导途径和小窝蛋白/网格蛋白非依赖型途径等[26]。第三种是倒置胶粒模型的形成,CPPs通过细胞膜上磷脂分子的移动形成倒置胶粒结构,而进入细胞质。CPPs在携带小分子物质通过磷脂双分子层时,可以通过静电吸附直接将小分子物质送入细胞[27]。为什么同样的CPPs却存在不同的穿膜机制和通路,究其原因主要是其穿膜机制会受到诸多因素的影响,如所携带“货物”分子的大小、理化特性的不同、穿膜目标细胞的不同、CPPs的使用浓度和实验操作条件等[24]。因CPPs的理化特性和穿膜机制不同,所以不同的CPPs在不同领域(肿瘤治疗、抗炎、生物成像、核酸与蛋白质的传送)的应用各有其倾向性。

4 CPPs在抗肿瘤方面的应用

虽然CPPs的穿膜机制仍未完全阐释清楚,但其在抗肿瘤方面的应用已占有一席之地。CPPs在抗肿瘤方面的应用主要是利用CPPs作为治疗性成分或药物的传导载体,增加活性成分的细胞内化度,提高药效[28]

4.1 融合凋亡素和凋亡素来源肽

凋亡素由鸡传染性贫血病毒 (chicken infectious anemia virus, CAV)非结构蛋白 VP3所编码,因其可诱导70多种肿瘤细胞的凋亡,而不影响正常细胞的生物学行为而被认为具有被开发成抗肿瘤生物制剂的巨大潜力。而且凋亡素的凋亡功能与其核定位密切相关[29]。将凋亡素与CPPs进行融合主要是通过CPPs的高效穿膜作用,增加凋亡素进入肿瘤细胞的效率,提高其诱导肿瘤细胞凋亡的作用。经研究发现,TAT短肽可提高凋亡素进入肿瘤细胞的效率,而且对肿瘤细胞的破坏存在剂量和时间依赖性[30]。Yang等[31]通过构建嵌合型多转导域介导凋亡素核酸增强其诱导肝癌细胞凋亡的作用,而且该研究进一步证实了将经典的细胞穿膜肽TAT与凋亡素融合具有比病毒作为凋亡素载体而更安全、更高效和避免激发机体免疫反应的特点。值得一提的是,凋亡素的关键结构域被鉴定了出来,这个关键结构域的组成信息主要包括VP3蛋白的两个核定位信号区(nuclear Location sequence, NLS1, aa 82~88; NLS2, aa 111~121)和一个亮氨酸富集区(aa 33~46),因此该肽段被称为凋亡素来源肽。而且凋亡素来源肽具有与完整凋亡素同样的功能与作用[32,33]。Zhou等[34]将TAT与凋亡素来源肽进行融合,构建TAT-凋亡素来源肽的融合多肽,结果发现该融合肽对胃癌细胞和顺铂抗性的胃癌细胞诱导凋亡的能力,具有浓度和时间依赖特性。将CPPs与抗肿瘤功能肽进行融合,主要是CPPs用来提高抗肿瘤肽在肿瘤细胞中的入胞和入核能力,增强其诱导肿瘤细胞凋亡的效率,另外合成肽也较容易获得,这也是未来抗肿瘤治疗的策略之一。最近,一个新的抗肿瘤肽的功能被鉴定了出来,即线粒体蛋白电压依赖性阴离子通道1(voltage-dependent anion channel 1, VDAC1)来源肽。Shteinfer-Kuzmine 等[35]将细胞穿膜肽Antp与VDAC1进行融合,构建的融合肽Antp-VDAC1在异种胶质母细胞瘤、肺癌和乳腺癌小鼠模型中,可有效抑制肿瘤生长,同时可诱导包括癌症干细胞在内的大量癌细胞死亡。

4.2 介导核酸

基因治疗已成为当今肿瘤治疗的第 4种治疗模式,但是具有治疗作用的核酸由于带有大量负电荷,而且属于大分子化合物,导致其不能进行细胞内化而发挥最佳的治疗作用。而带正电荷的阳离子型CPPs可以实现与带负电荷核酸的非共价键结合,起到高效转导治疗核酸进入细胞的作用。CPPs与治疗性核酸的非共价键结合,操作简单,容易制备,获得的CPPs治疗性核酸复合物已被广泛地应用于肿瘤治疗领域。siRNA可特异性地导致靶基因的沉默,因其具备特异性好和高效性的特点而成为极具前景的抗肿瘤基因治疗药物。Liu等[36]将阳离子型CPP PVBLG-8通过静电非共价与siRNA结合在一种阴离子随机卷曲的多肽-多聚谷氨酸作用下形成的纳米粒子上,用于靶向沉默表皮生长因子受体(epidermal growth factor receptor,EGFR),结果发现该纳米颗粒可高效抑制裸鼠模型胶质母细胞瘤的生长和迁移。Fang等[37]为了增加TAT肽/siRNA(靶向血管内皮生长因子受体-1)复合物对肿瘤细胞的靶向投递作用,将TAT肽与血管内皮生长因子受体-1的配体肽进行融合,结果发现该融合肽的靶向投递效果和沉默效率要高于单独使用TAT肽。

4.3 传递抗肿瘤药物

因化学药物无法特异和高效地进入肿瘤细胞和肿瘤组织,因此会产生药效不佳和副作用的不良现象[38]。根据肿瘤组织和肿瘤细胞在微环境和细胞表面标志分子的表达与正常细胞不同的特点,设计了肿瘤特异性CPPs,携带化学药物,靶向进入肿瘤组织和细胞,发挥高效抗肿瘤作用。7-乙基-10-羟基喜树碱(SN38)是一种传统的抗肿瘤药物,具有广谱的抗肿瘤活性。但是由于其自身的理化特性和副作用强等缺点,导致很难用于肿瘤的临床治疗。Bi等[39]采用细胞穿膜肽TAT和PEG修饰SN38制备成TAT-PEG-SN38前体药物,改善了SN38的溶解性,同时提高了肿瘤细胞对其的摄取率。阿霉素又叫多柔比星,是一种抗肿瘤抗生素,主要是抑制细胞RNA 和DNA的合成,其抗瘤谱较广,对多种肿瘤有作用。Xiang等[40]利用源于人类的细胞穿膜肽dNP2通过N-(2-羟基丙基)-甲基丙烯酰胺(HPMA)修饰与阿霉素形成共轭物,结果发现该复合物诱导HeLa细胞的凋亡率比单独使用阿霉素的要高46%,而且可明显抑制裸鼠实体瘤的生长。

4.4 携带大分子抗体蛋白

具有功能活性的蛋白质因分子量较大,而且细胞膜的选择性通透作用导致大分子蛋白质不能进入细胞内发挥作用。Lim等[41] 在buforin IIb (一种抗菌肽) 基础上设计了一种含17个氨基酸的穿膜肽BR2,其与抗K-ras的单链抗体连接后能够在体外明显诱导 K-ras突变的HCT116结肠癌细胞凋亡。

4.5 融合抗原肽/蛋白质——构建抗肿瘤疫苗

肿瘤疫苗必须能够将抗原传递给抗原提呈细胞如树突状细胞(dendritic cells,DCs),DCs能够分别通过与MHC-分子展示捕获的抗原,进一步激活CD8+和 CD4+ T细胞,而CPPs融合抗原肽或抗原蛋白可以促进这一重要的免疫机制的产生[42,43]。Derouazi等[43]借助上述策略将源于EB病毒的 ZEBRA 蛋白细胞穿膜肽Z12与可特异性激活CD8+细胞的鸡卵清蛋白表位肽(aa 257~264)进行链接,进行低剂量(10nmol/L)免疫接种,发现可产生强烈的CD8+ T细胞免疫反应。相比之下,缺少细胞穿膜肽Z12构建的肿瘤疫苗诱导机体产生的免疫反应则可忽略不计。Belnoue等[44]以源于ZEBRA 蛋白的CPPs为基础与能够特异性激活CD4+和CD8+ T细胞的抗原进行融合构建抗肿瘤疫苗,结果发现单独使用该疫苗没有引起理想的抗肿瘤免疫反应,当与免疫佐剂使用后大大改善了抗肿瘤免疫反应的产生。该实验说明单纯CPPs融合抗原制备的抗肿瘤疫苗,无法产生良好效果的抗肿瘤免疫反应,需要在佐剂的辅助下才能发挥更好的治疗作用。以上实验表明,CPPs对肿瘤疫苗诱导机体激活CD4+和 CD8+ T细胞免疫应答至关重要,这与CPPs所携带的抗原表位肽和抗原蛋白被树突状细胞高效摄取有关[44]。最近,可直接激活CD8+T细胞,引发细胞毒性免疫反应的CPPs也已经被发现和鉴定了出来[45]。上述工作的完成,无疑为抗肿瘤疫苗的设计提供了新的思路和策略。

5 存在的问题与展望

因CPPs生物安全性好、穿膜细胞作用广泛,且具有强大的运载潜能和高效的特点,是近30年来新发展的一类外源活性分子传导载体,在生物治疗领域具有广阔的应用前景。而且目前已有以CPPs为基础的治疗中枢神经系统肿瘤的药物进入了I期临床试验[46]。然而,CPPs在体内应用时仍然面临着细胞靶向性差、血循环半衰期短和与活性成分形成的复合物无法成功从内涵体逃逸到达作用的靶位点等问题[47]。当前,为了解决以上问题有研究者将CPPs进行修饰后与治疗核酸结合,再经靶向配体和PLG(pH敏感肽)化修饰后制备成脂质体纳米给药系统,可以安全、靶向和高效投递治疗性核酸,增加基因治疗作用[36]。另外,可采用条件性CPPs来增加其靶向作用,如光敏性CPPs。Yang等[48] 将光敏性CPPs和靶向配体RGD(CD13配体)后的脂质体介导siRNA进入细胞, 当脂质体复合物到达肿瘤组织和细胞后使用紫外线照射可引发脂质体的裂解和siRNA释放。
肿瘤是复杂的多基因、多阶段、多因素疾病,仅依靠单一的基因治疗方法难以奏效,可尝试采用多种方法进行联合治疗,产生优势互补的协同抗肿瘤作用。Bi等[39]采用CPPs和鱼精蛋白共递送喜树碱SN38和靶向生存素的siRNA脂质体纳米给药系统,可明显改善单独用药的抗肿瘤效果,而且可靶向渗透入肿瘤组织。有多种不同来源的CPPs被相继鉴定和开发出来,不同理化特性的CPPs应用各有其倾向性,但是对于新鉴定出来的CPPs应首先对其具体穿膜机制进行研究和阐释清楚,因为其机制的阐明是更好地利用和发挥细CPPs作用的关键前提。目前,有关CPPs用于活性成分和药物的体内投递研究仍在进行中,其在临床应用过程中存在的问题,如缺乏靶向性、生物利用度较低和血液半衰期短等问题也在进一步的改善和攻克。相信在不久的将来,越来越多的CPPs能够介导针对恶性肿瘤的大分子活性物质和治疗性核酸而被用于抗肿瘤临床治疗。
致谢:感谢台州学院校立科研培育项目(2018PY019)对新型细胞穿膜肽鉴定研究的支持。

References

[1]
Xiao Z J, Lu J R . Strategies for enhancing fermentative production of acetoin: A review. Biotechnol Adv, 2014,32(2):492-503.
Acetoin is a volatile compound widely used in foods, cigarettes, cosmetics, detergents, chemical synthesis, plant growth promoters and biological pest controls. It works largely as flavour and fragrance. Since some bacteria were found to be capable of vigorous acetoin biosynthesis from versatile renewable biomass, acetoin, like its reduced form 2,3-butanediol, was also classified as a promising bio-based platform chemical. In spite of several reviews on the biological production of 2,3-butanediol, little has concentrated on acetoin. The two analogous compounds are present in the same acetoin (or 2,3-butanediol) pathway, but their production processes including optimal strains, substrates, derivatives, process controls and product recovery methods are quite different. In this review, the usages of acetoin are reviewed firstly to demonstrate its importance. The biosynthesis pathway and molecular regulation mechanisms are then outlined to depict the principal network of functioning in typical species. A phylogenetic tree is constructed and the relationship between taxonomy and acetoin producing ability is revealed for the first time, which will serve as a useful guide for the screening of competitive acetoin producers. Genetic engineering, medium optimization, and process control are effective strategies to improve productivity as well. Currently, downstream processing is one of the main barriers in efficient and economical industrial acetoin fermentation. The future prospects of microbial acetoin production are discussed in light of the current progress, challenges, and trends in this field.
[2]
Xiao Z J, Lu J R . Generation of acetoin and its derivatives in foods. J Agric Food Chem, 2014,62(28):6487-6497.
Acetoin is a common food flavor additive. This volatile compound widely exists in nature. Some microorganisms, higher plants, insects, and higher animals have the ability to synthesize acetoin using different enzymes and pathways under certain circumstances. As a very active molecule, acetoin acts as a precursor of dozens of compounds. Therefore, acetoin and its derivatives are frequently detected in the component analysis of a variety of foods using gas chromatography-mass spectrometry. Because of the increasing importance of these compounds, this paper reviews the origins and natural existence of these substances, physiological roles, the biological synthesis pathways, nonenzymatic spontaneous reactions, and the common determination methods in foods. This work is the first review on dietary natural acetoin.
[3]
Gao C, Zhang L, Xie Y , et al. Production of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent carbonyl reductase and glucose dehydrogenase. Bioresour Technol, 2013,137(6):111-115.
Production of (3S)-acetoin ((3S)-AC), an important platform chemical, is desirable but difficult to perform. An NADPH-dependent carbonyl reductase (Gox0644) from Gluconobacter oxydans DSM 2003 was confirmed to have a good ability to reduce diacetyl (DA) to produce (3S)-AC. In this work, the NADPH-dependent carbonyl reductase was expressed and purified. Glucose dehydrogenase from Bacillus subtilis 168 was coupled with the NADPH-dependent carbonyl reductase to produce (3S)-AC from DA. Under the optimal conditions, 12.2gl611 (3S)-AC was produced from 14.3gl611 DA in 75min. Because DA can be biotechnological produced, the two-enzymes coupling system might be a promising alternative for the (3S)-AC production.
[4]
Werpy T A, Petersen G . Top value added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas. Tennessee: US Department of Energy, 2004, 6-12.
This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals as considered for this analysis are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sotitol, and xylitol/arabinitol.
[5]
Zhang L Y, Singh R S, Sivakumar D , et al. An artificial synthetic pathway for acetoin, 2,3-butanediol, and 2-butanol production from ethanol using cell free multi-enzyme catalysis. Green Chemistry, 2018,20(1):230-242.
Upgrading ethanol to higher order alcohols is desired but difficult using current biotechnological methods. In this study, we designed a completely artificial reaction pathway for upgrading ethanol to acetoin, 2,3-butanediol, and 2-butanol in a cell-free bio-system composed of ethanol dehydrogenase, formolase, 2,3-butanediol dehydrogenase, diol dehydratase, and NADH oxidase. Under optimized conditions, acetoin, 2,3-butanediol, and 2-butanol were produced at 88.78%, 88.28%, and 27.25% of the theoretical yield from 100 mM ethanol, respectively. These results demonstrate that this artificial synthetic pathway is an environmentally-friendly novel approach for upgrading bio-ethanol to acetoin, 2,3-butanediol, and 2-butanol.
[6]
甄德帅 . 香料乙偶姻(3-羟基-2-丁酮)化学工艺合成现状. 黔南民族师范学院学报, 2015,35(4):121-124.
Abstract
乙偶姻,化学名为3-羟基-2-丁酮,是国际上常用的香料品种。本文综述了由丁二酮和丁二醇两种原料合成乙偶姻的研究现状,分析了乙偶姻合成研究的发展趋势。
Zhen D S . On the current chemical synthesis techniques of acetoin flavor. Journal of Qiannan Normal College for Nationalities, 2015,35(4):121-124.
[7]
Xiao Z J, Liu P H, Qin J Y , et al. Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolyzate. Appl Microbiol Biotechnol, 2007,74(1):61-68.
The nutritional requirements for acetoin production by Bacillus subtilis CICC 10025 were optimized statistically in shake flask experiments using indigenous agroindustrial by-products. The medium components considered for initial screening in a Plackett–Burman design comprised a-molasses (molasses submitted to acidification pretreatment), soybean meal hydrolysate (SMH), KH 2 PO 4 ·3H 2 O, sodium acetate, MgSO 4 ·7H 2 O, FeCl 2 , and MnCl 2 , in which the first two were identified as significantly (at the 99% significant level) influencing acetoin production. Response surface methodology was applied to determine the mutual interactions between these two components and optimal levels for acetoin production. In flask fermentations, 37.902g l 611 acetoin was repeatedly achieved using the optimized concentrations of a-molasses and SMH [22.0% (v/v) and 27.8% (v/v), respectively]. a-Molasses and SMH were demonstrated to be more productive than pure sucrose and yeast extract plus peptone, respectively, in acetoin fermentation. In a 5-l fermenter, 35.402g l 611 of acetoin could be obtained after 56.402h of cultivation. To our knowledge, these results, i.e., acetoin yields in flask or fermenter fermentations, were new records on acetoin fermentation by B. subtilis .
[8]
张燎原, 洪欲强, 陈双 , 等. 以葡萄糖和木糖为双底物生物合成乙偶姻的条件优化. 化学与生物工程, 2012,29(7):30-35.
Abstract
以木糖为唯一碳源筛选了10株乙偶姻生产菌株,对乙偶姻产量最高菌株进行16SrDNA鉴定,测序结果表明该菌株为多粘芽孢杆菌,命名为LY107。经单因素实验优化培养条件为:培养温度37℃、pH值7.0、装液量15mL/250mL、接种量5%(体积比)。采用葡萄糖-木糖(2∶1,质量比,下同)为碳源模拟木质纤维素水解液发酵生产乙偶姻,经Plackett-Burman(PB)实验和RSM优化培养基组分(g.L-1)为:葡萄糖-木糖(2∶1)60、蛋白胨5、酵母粉16.5、硫酸锰0.05、硫酸亚铁0.005、磷酸二氢钾0.1、乙酸钠2.47。在优化培养条件和培养基组分下,乙偶姻最高产量达23.9g.L-1,葡萄糖-木糖转化率为79.9%。
Zhang L Y, Hong Y Q, Chen S , et al. Optimization of co-fermentation condition of glucose and xylose for acetoin production. Chemistry and Bioengineering, 2012,29(7):30-35.
[9]
郝飞 . 枯草芽孢杆菌发酵生产乙偶姻的研究. 无锡: 江南大学, 2013.
Abstract
乙偶姻又称3-羟基-2-丁酮,天然存在于可可、干酪、香蕉、葡萄、玉米等食品中,具有奶油香、脂香的特征,因此多用于食品、乳品及饮料中香料的配制;此外,乙偶姻作为一种平台化合物,还广泛的应用于化工、医药等行业。目前,乙偶姻的合成方法主要有化学法和生物法。生物法以其原料来源广泛,产品绿色天然,越来越受到人们的喜爱。生物法合成乙偶姻主要以微生物发酵法为主,而有关研究多集中于优良菌种的筛选及培养基的优化方面,对于发酵过程的研究及相关的调控手段报道较少。 本文在实验室前期研究的基础上,得到了一株高产乙偶姻的枯草芽孢杆菌(Bacillussubtilis CCTCC M208157),对其发酵乙偶姻的过程进行了研究。首先对菌株发酵乙偶姻的培养基进行了优化,并通过代谢流量分析的方法,明确了该菌株乙偶姻发酵代谢流的分布情况;之后通过添加表明活性剂、pH分段调控和补料分批发酵等手段,提高菌株发酵乙偶姻的产量;最后,对发酵液中乙偶姻的提取条件做了初步探索,为菌株发酵生产乙偶姻的进一步放大奠定了基础。 主要研究结果如下: (1)首先对B. subtilis CCTCC M208157发酵生产乙偶姻使用的培养基进行了优化,得到培养基组成为:葡萄糖80g/L、酵母膏20g/L、(NH_4)_2SO_410g/L、K_2HPO_410g/L、MgSO_41g/L、MnSO_40.05g/L。通过对培养基的优化,乙偶姻产量可达23.6g/L,相比对照提高了18.3%。 (2)采用代谢流量分析的方法对B. subtilis CCTCC M208157进行了研究,通过构建菌株的乙偶姻代谢网络模型,计算得到菌株乙偶姻发酵过程的代谢流量分布情况,菌株的葡萄糖代谢流量有86.6%用于乙偶姻的合成,说明菌株具有较强的乙偶姻合成能力。 (3)考察了添加不同表面活性剂对B. subtilis CCTCC M208157发酵生产乙偶姻的影响;其中添加二甲亚砜(DMSO)可提高菌株利用底物能力,当添加3.0g/L DMSO时乙偶姻产量可达26.8g/L,发酵结束后无底物残留,相比对照提高了16.3%。 (4)考察不同pH条件下B. subtilis CCTCC M208157乙偶姻发酵过程,通过发酵动力学参数的分析,提出了相应的pH调控策略如下:0-16h,pH5.5;16-72h,pH4.5。通过两段pH控制策略,菌株发酵乙偶姻的产量、产率、生产强度分别为32.7g/L、0.41g/g、0.91g/(L·h),使得其相比初始发酵条件下分别提高了41%、42%、69%。 (5)提出了补料分批发酵策略:初始葡萄糖浓度为80g/L,发酵24h,开始以4g/(L·h)的流加速度向发酵体系中补加500g/L的葡萄糖溶液,共补加100g/L的葡萄糖。通过补料分批发酵,乙偶姻产量达到58.7g/L,为目前野生菌种报道的最高值。 (6)对发酵液中乙偶姻的提取做了初步探索,提取流程如下:首先在-0.098MPa,45℃条件下蒸馏,收集馏分得到乙偶姻水溶液,之后添加等体积的乙酸乙酯萃取,重复6次萃取合并各次萃取有机相,再于-0.098MPa,30℃蒸馏,除去乙酸乙酯,得到乙偶姻产品,经气相色谱检测纯度可达95%。
Hao F . Improvement to acetoin fermentation technology by Bacillus subtilis CCTCC M 208157. Wuxi: Jiang Nan University, 2013.
[10]
Xu Q, Xie L, Li Y , et al. Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J Chem Technol Biotechnol, 2015,90(1):93-100.
Abstract BACKGROUND Optically pure acetoin is an important potential pharmaceutical intermediate. It has also been widely used to synthesize novel optically active α-hydroxyketone derivatives and liquid crystal composites. Recombinant Escherichia coli was developed for efficient (3 R )-acetoin production. Culture medium optimization and process control were carried out to improve (3 R )-acetoin yield by the engineered strain. RESULTS A synthetic pathway involved the budRAB genes from Serratia marcescens and NADH oxidase gene from Lactobacillus brevis in E. coli was developed for efficient (3 R )-acetoin production. Batch culture showed that 23.4 g L611 of (3 R )-acetoin could be obtained from 60 g L611 glucose by the engineered strain. Chiral-column GC analysis indicated that the stereoisomeric purity of (3 R )-acetoin produced was 97.3%. Further, the medium composition was optimized in shake flasks by an orthogonal design method. Under optimal conditions, (3 R )-acetoin concentration reached 38.3 g L611 in flask fermentation. Fed-batch fermentation based on a suitable agitation speed was carried out in a 5 L bioreactor, and maximum (3 R )-acetoin concentration of 60.3 g L611 was achieved with a productivity of 1.55 g L611 h611 and yield 86.3%. CONCLUSION An engineering E. coli for efficient (3 R )-acetoin production was constructed. The optimization of fermentation variables and fed-batch culture resulted in a maximum (3 R )-acetoin concentration of 60.3 g L611. 08 2013 Society of Chemical Industry
[11]
Crout D, Littlechild J, Morrey S . Acetoin metabolism: stereochemistry of the acetoin produced by the pyruvate decarboxylase of wheat germ and by theα-acetolactate decarboxylase of Klebsiella aerogenes. [2018-10-12]..
[12]
Kochius S, Paetzold M, Scholz A , et al. Enantioselective enzymatic synthesis of the α-hydroxy ketone (R)-acetoin from meso-2,3-butanediol. J Mol Catal B Enzym, 2014,103(5):61-66.
Acetoin (3-hydroxy-2-butanone) is an important flavour compound and is applied in cosmetics, pharmacy and chemical synthesis. In contrast to chemical syntheses or fermentations an enzymatic route facilitates enantioselective acetoin production. The discovery of a (S)-selective alcohol dehydrogenase enables a novel production process of (R)-acetoin from meso-2,3-butanediol. It was shown that the regeneration of oxidised nicotinamide adenine dinucleotide is a key point in preparative application of dehydrogenases for the oxidative route. An electrochemical regeneration system was successful combined with the ADH catalysed reaction. Up to 48mM (R)-acetoin was produced in the reaction system while productivities up to 2mMh 1 were reached. The possibility to apply an electrochemical system in a semi-preparative synthesis will stimulate further research of electroenzymatic processes with oxidoreductases.
[13]
Wachtmeister J, Rother D . Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Curr Opin Biotechnol, 2016,42(6):169-177.
Recent advances in biocatalysis have strongly boosted its recognition as a valuable addition to traditional chemical synthesis routes. As for any catalytic process, catalyst's costs and stabilities are of highest relevance for the economic application in chemical manufacturing. Employing biocatalysts as whole cells circumvents the need of cell lysis and enzyme purification and hence strongly cuts on cost. At the same time, residual cell wall components can shield the entrapped enzyme from potentially harmful surroundings and aid to enable applications far from natural enzymatic environments. Further advantages are the close proximity of reactants and catalysts as well as the inherent presence of expensive cofactors. Here, we review and comment on benefits and recent advances in whole cell biocatalysis.
[14]
Xie N Z, Li J X, Song L F , et al. Genome sequence of type strain Paenibacillus polymyxa DSM 365, a highly efficient producer of optically active (R,R)-2,3-butanediol. J Biotechnol, 2014,195(3):72-73.
Paenibacillus polymyxa DSM 365, an efficient producer of (R,R)-2,3-butanediol, is known to show the highest production titer and productivity reported to date. Here, the first draft genome sequence of this promising strain may provide the genetic basis for further insights into the molecular mechanisms underlying the production of (R,R)-2,3-butanediol with high optical purity and at a high titer. It will also facilitate the design of rational strategies for further strain improvements, as well as construction of artificial biosynthetic pathways through synthetic biology for asymmetric synthesis of chiral 2,3-butanediol or acetoin in common microbial hosts.
[15]
奥斯伯M F, 金斯顿E R, 赛德曼G J, 等. 精编分子生物学实验指南(译). 第四版. 马学军, 舒跃龙,颜子颖,等.北京: 科学出版社, 2005: 887-888.
Ausubel F M, Kingston R E, Seidman J G , et al. Short protocols in molecular biology . 4th ed. Ma X J, Shu Y L, Yan Z Y, et al. Bejing: Science Press, 2005: 887-888.
[16]
Ji X, Huang H, Ouyang P . Microbial 2,3-butanediol production: A state of the art review. Biotechnol Adv, 2011,29(3):351-364.
[17]
Häβler T, Schieder D, Pfaller R , et al. Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour Technol, 2012,124(11):237-244.
Fed-batch fermentations for the production of 2,3-butanediol (BDL) with Paenibacillus polymyxa DSM 365 were investigated in 2-L-fermenters. A suitable micro-aerobic set-up enabled high product selectivity of up to 98% R,R-BDL towards meso-BDL and acetoin. Up to 111gL611R,R-BDL within 54h could be achieved with sufficient supply of complex medium (yeast extract). To the best of the knowledge of the authors, this is the highest titer so far reported for P. polymyxa indicating its high potential as a non pathogenic BDL-producer. Fermentation in low nutritional medium (5gL611 yeast extract) yielded up to 72gL611 BDL+acetoin (79% R,R-BDL), yet was affected by formation of exopolysaccharides (EPS). In the range of 30–40°C EPS formation decreased with raising temperature although growth rate and BDL-production remained similar. Additionally, Tween8003 was found to be a good additive to reduce viscosity caused by EPS.
[18]
Xie N Z, Chen X R, Wang Q Y , et al. Microbial routes to (2R,3R)-2,3-butanediol: Recent advances and future prospects. Curr Top Med Chem, 2017,17(21):2433-2439.
Abstract
(2R,3R)-2,3-Butanediol has many industrial applications, such as it is used as an antifreezeagent and low freezing point fuel. In addition, it is particularly important to provide chiral groups indrugs. In recent years, this valuable bio-based chemical has attracted increasing attention, and significantprogress has been made in the development of microbial cell factories for (2R,3R)-2,3-butanediolproduction. This article reviews recent advances and challenges in microbial routes to (2R,3R)-2,3-butanediol production, and highlights the metabolic engineering and synthetic biological approachesused to improve titers, yields, productivities, and optical purities. Finally, a systematic and integrativestrategy for developing high-performance microbial cell factories is proposed
[19]
李亿, 李检秀, 刘海余 , 等. 多黏类芽孢杆菌同步糖化发酵玉米粉生产(R,R)-2,3-丁二醇. 广西科学, 2016,23(1):41-46.
Abstract
【目的】对多粘类芽孢杆菌Paenibacillus polymya的玉米粉同步糖化发酵工艺进行优化,以获得低成本、高效的(R,R)-2,3-丁二醇生产技术。【方法】研究玉米粉浓度、氮源种类和氮源浓度对菌体生长、耗糖能力以及(R,R)-2,3-丁二醇产量、产率、得率和转化率的影响,并在此基础上进一步考察培养基中其它成分对(R,R)-2,3-丁二醇发酵的影响。【结果】优化后的培养基组分为玉米干粉140g/L,酵母粉30g/L,Na。HP043g/L,KH2P043g/L,(NH4)zS042g/L,MgS040.8g/L,微量元素溶液2mL/L。使用优化后的培养基进行同步糖化发酵,发酵50h后(R,R)-2,3-丁二醇产量达到56.28g/L(光学纯度为98.3%),对葡萄糖的得率为0.44g/g,产率为1.13g/(L·h)。【结论】(R,R)-2,3-丁二醇生产技术低价高效,可为其工业化生产提供参考。
Li Y, Li J X, Liu H Y , et al. Simultaneous sccharification and (R,R)-2,3-butanediol fermentation from corn flour by Paenibacillus polymyxa. Guangxi Sciences, 2016,23(1):41-46.
[20]
Gao J, Xu Y Y, Li F W , et al. Production of S-acetoin from diacetyl by Escherichia coli transformant cells that express the diacetyl reductase gene of Paenibacillus polymyxa ZJ-9. Lett Appl Microbiol, 2013,57(4):274-281.
[21]
Xiao Z, Lv C, Gao C , et al. A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals . PLoS One, 2010,5:e8860.
BackgroundThe high costs of pyridine nucleotide cofactors have limited the applications of NAD(P)-dependent oxidoreductases on an industrial scale. Although NAD(P)H regeneration systems have been widely studied, NAD(P)+ regeneration, which is required in reactions where the oxidized form of the cofactor is used, has been less well explored, particularly in whole-cell biocatalytic processes.Methodology/Principal FindingsSimultaneous overexpression of an NAD+ dependent enzyme and an NAD+ regenerating enzyme (H2O producing NADH oxidase from Lactobacillus brevis) in a whole-cell biocatalyst was studied for application in the NAD+-dependent oxidation system. The whole-cell biocatalyst with (2R,3R)-2,3-butanediol dehydrogenase as the catalyzing enzyme was used to produce (3R)-acetoin, (3S)-acetoin and (2S,3S)-2,3-butanediol.Conclusions/SignificanceA recombinant strain, in which an NAD+ regeneration enzyme was coexpressed, displayed significantly higher biocatalytic efficiency in terms of the production of chiral acetoin and (2S,3S)-2,3-butanediol. The application of this coexpression system to the production of other chiral chemicals could be extended by using different NAD(P)-dependent dehydrogenases that require NAD(P)+ for catalysis.
[22]
Yamamoto H, Mitsuhashi K, Kimoto N , et al. A novel NADH-dependent carbonyl reductase from Kluyveromyces aestuarii and comparison of NADH-regeneration system for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate. Biosci Biotechnol Biochem, 2004,68(3):638-649.
[23]
Nina R, Markus N, Andreas L , et al. Characterization of a whole-cell catalyst co-expressing glycerol dehydrogenase and glucose dehydrogenase and its application in the synthesis of L-glyceraldehyde. Biotechnol Bioeng, 2010,106(4):541-552.
A whole-cell catalyst using Escherichia coli BL21(DE3) as a host, co-expressing glycerol dehydrogenase (GlyDH) from Gluconobacter oxydans and glucose dehydrogenase (GDH) from Bacillus subtilis for cofactor regeneration, has been successfully constructed and used for the reduction of aliphatic aldehydes, such as hexanal or glyceraldehyde to the corresponding alcohols. This catalyst was characterized in terms of growth conditions, temperature and pH dependency, and regarding the influence of external cofactor and permeabilization. In the case of external cofactor addition we found a 4.6-fold increase in reaction rate caused by the addition of 1 M NADP+. Due to the fact that pH and temperature are also factors which may affect the reaction rate, their effect on the whole-cell catalyst was studied as well. Comparative studies between the whole-cell catalyst and the cell-free system were investigated. Furthermore, the successful application of the whole-cell catalyst in repetitive batch conversions could be demonstrated in the present study. Since the GlyDH was recently characterized and successfully applied in the kinetic resolution of racemic glyceraldehyde, we were now able to transfer and establish the process to a whole-cell system, which facilitated the access to L-glyceraldehyde in high enantioselectivity at 54% conversion. All in all, the whole-cell catalyst shows several advantages over the cell-free system like a higher thermal, a similar operational stability and the ability to recycle the catalyst without any loss-of-activity. The results obtained making the described whole-cell catalyst an improved catalyst for a more efficient production of enantiopure L-glyceraldehyde. Biotechnol. Bioeng. 2010;106: 541 552. 2010 Wiley Periodicals, Inc.

Footnotes

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。

RIGHTS & PERMISSIONS

Copyright reserved © 2019. Office of China Biotechnology.
PDF(1059 KB)

Accesses

Citation

Detail

Sections
Recommended

/