Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (11): 105-113    DOI: 10.13523/j.cb.20151115
    
Research Progress of Immobilized Enzyme Carriers
LI Li-juan1, MA Gui-ping1, ZHAO Lin-guo2
1. Wulanchabu Medical College, Wulanchabu 012000, China;
2. Nanjing Forestry University, Nanjing 210037, China
Download: HTML   PDF(521KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The application of the immobilized enzyme technology improve the stability and reusability of enzyme,which provide conditions for the large-scale use of enzyme in industry.The carrier is one of the key links in the immobilized enzyme technologies,and has become a research focus for immobilized enzyme technology at present.The advantages and disadvantages of mesoporous materials,nano-materials,magnetic materials and natural polymer materials are introduced,while their research status and application results are mentioned.Some methods of analysis and measurement for carrier materials are reviewed including morphology analysis,structure analysis, element analysis,specific surface area and pore size analysis,and the next research orientation and aim are summarized prospectively,which provides the reference for the further study and rational utilization of immobilized enzyme carrier.



Key wordsModified      Carrier material      Coated      Immobilized enzyme     
Received: 06 August 2015      Published: 24 November 2015
ZTFLH:  Q814  
Cite this article:

LI Li-juan, MA Gui-ping, ZHAO Lin-guo. Research Progress of Immobilized Enzyme Carriers. China Biotechnology, 2015, 35(11): 105-113.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20151115     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I11/105

[1] 张萍,侯红萍.新型酶固定化技术研究进展. 酿酒科技,2010,192(6):82-85. Zhang P,Hou H P.Research progress in newly-developed enzyme immobilization techniques. Liquor-Making Science & Technology,2010,192(6):82-85.
[2] 赵林果,李丽娟,王平,等.海藻酸钠固定化β-葡萄糖苷酶的研究.生物加工过程,2007,5(4):25-31. Zhao L G,Li L J,Wang P, et al.Immobilization of β-glucosidase by sodium alginate. Chinese Journal of Bioprocess Engineering,2007,5(4):25-31.
[3] 王新,刘丽,陆佳靓.固定化漆酶载体研究进展. 生态学杂志,2013,32(10): 2823-2829. Wang X,Liu L,Lu J L.Carriers for immobilized laccase: Research progress.Chinese Journal of Ecology, 2013,32(10):2823-2829.
[4] 董炎炎,刘长虹,马霞. 酶固定化载体材料的研究进展.上海应用技术学院学报(自然科学版),2013,13(4):295-298. Dong Y Y,Liu C H,Ma X.Recent progress of materials used as enzyme immobilization carrier. Journal of Shanghai Institute of Technology(Natural Science),2013,13(4):295-298.
[5] Zhou Z,Martin H. Recent progress in biocatalysis with enzymes immobilized on mesoporous hosts. Topics in Catalysis,2012, 16-18(55):1081-1100.
[6] Kannana K,Jasra R V. Immobilization of alkaline serine endopeptidase from Bacillus licheniformis on SBA-15 and MCF by surface covalent binding.Journal of Molecular Catalysis B:Enzymatic,2009,56(1):34-40.
[7] Lei S J,Xu Y X,Fan G,et al.Immobilization of naringinase on mesoporous molecular sieve MCM-41 and its application to debittering of white grapefruit. Applied Surface Science,2011,257(9):4096-4099.
[8] Yu W H,Tong D S,Fang M,et al. Immobilization of Candida rugosa lipase on MSU-H type mesoporous silica for selective esterification of conjugated linoleic acid isomers with ethanol. Journal of Molecular Catalysis B: Enzymatic,2015,111:43-50.
[9] Hu Z F,Xu L Q,Wen X H.Mesoporous silicas synthesis and application for lignin peroxidase immobilization by covalent binding method. Journal of Environmental Sciences, 2012,25(1):181-187.
[10] Zou B,Hua Y,Cui F J.Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase. Journal of Colloid and Interface Science,2014,417:210-216.
[11] 纳薇.介孔有机氧化硅材料的合成、改性及酶固定化.北京:北京工业大学,材料学,2010. Na W.Synthesis,Modification and Enzyme Immobilization of Periodic Mesoporous Organosilicas. Beijing:Beijing University of Technology,Material Science,2010.
[12] Yasmina T,Müller K. Synthesis and surface modification of mesoporous MCM-41 silica materials. Journal of Chromatography A,2010,1217(20):3362-3374.
[13] Li Y,Wang W,Han P F.Immobilization of Candida sp.99-125 lipase onto silanized SBA-15 mesoporous materials by physical adsorption. Korean J Chem Eng,2014,31(1):98-103.
[14] Guan L Y,Di B,Su M X,et al.Immobilization of β-glucosidase on bifunctional periodic mesoporous organosilicas. Biotechnology Letters,2013,35(8):1323-1330.
[15] Yang J,Hu Y,Jiang L,et al.Enhancing the catalytic properties of porcine pancreatic lipase by immobilization on SBA-15 modified by functionalized ionic liquid.Biochemical Engineering Journal,2013,70(15):46-54.
[16] Hu Y,Tang S S,Jiang L,et al.Immobilization of Burkholderia cepacia lipase on functionalized ionic liquids modified mesoporous silica SBA-15.Process Biochemistry,2012,47(12):2291-2299.
[17] Zou B,Hu Y,Yu D H,et al.Functionalized ionic liquid modified mesoporous silica SBA-15:A novel, designable and efficient carrier for porcine pancreas lipase.Colloids and Surfaces B:Biointerfaces,2011,88(1):93-99.
[18] Bian W Y,Yan B Y,Shi N,et al. Room temperature ionic liquid (RTIL)-decorated mesoporous silica SBA-15 for papain immobilization: RTIL increased the amount and activity of immobilized enzyme. Materials Science and Engineering C, 2012,32:364-368.
[19] 唐苏苏,胡燚,余定华,等.功能化离子液体修饰的SBA-15固定化Burkholderia cepacia脂肪酶.催化学报,2012,33(9):1565-1571. Tang S S,Hu Y,Yu D H,et al.Immobilization of Burkholderia cepacia lipase on functionalized ionic liquids modified mesoporous silica SBA-15. Chinese Journal of Catalysis,2012,33(9):565-1571.
[20] Ansari S A,Husain Q.Potential applications of enzymes immobilized on/in nano materials:a review. Biotechnology Advances,2012,30(3):512-523.
[21] Garlet T B,Weber C T,Klaic R,et al.Carbon nanotubes as supports for inulinase immobilization. Molecules,2014,19(9):14615-14624.
[22] Yan X L,Wang X,Zhao P,et al.Xylanase immobilized nanoporous gold as a highly active and stable biocatalyst. Microporous and Mesoporous Materials,2012,161:1-6.
[23] Lee Y M,Kwon O Y,Yoon Y J,et al.Immobilization of horseradish peroxidase on multi-wall carbon nanotubes and its electrochemical properties.Biotechnology Letters,2006,28(1):39-43.
[24] Arora N,Sharma N N. Arc discharge synthesis of carbon nanotubes:comprehensive review. Diamond and Related Materials,2014,50:135-150.
[25] Lobiak E V,Shlyakhova E V, Bulusheva L G.. Ni-Mo and Co-Mo alloy nanoparticles for catalytic chemical vapor deposition synthesis of carbon nanotubes.Journal of Alloys and Compounds,2015,621:351-356.
[26] Alex A P,David B G,Henrik S. Time-resolved diagnostics of single wall carbon nanotube synthesis by laser vaporization.Applied Surface Science,2002,197-198:552-562.
[27] 张青.碳纳米管共固定α-淀粉酶和糖化酶的研究.北京:北京化工大学,化学工程与技术,2012. Zhang Q.Coimmobilization of Amylase and Glucoamylase onto Carbon Nanotubes. Beijing:Beijing University of Chemical Technology,Chemical Engineering and Technology,2012.
[28] Raghavendra T,Basak A M, Manocha L.Robust nanobioconjugates of Candida antarctica lipase B multiwalled carbon nanotubes:characterization and application for multiple usages in non-aqueous biocatalysis.Bioresource Technology,2013,140:103-110.
[29] Shen E,Qu Y Y,Zhou H,et al.Catalytic performance and stability of C-C bond hydrolase BphD immobilized onto single-wall carbon nanotubes.Chinese Journal of Catalysis,2013,34:723-733.
[30] Zhou H,Qu Y Y,Kong C L,et al.Catalytic performance and molecular dynamic simulation of immobilized C-C bond hydrolase based on carbon nanotube matrix.Colloids and Surfaces B:Biointerfaces,2014,116:365-371.
[31] Feng W,Ji P J.Enzymes immobilized on carbon nanotubes .Biotechnology Advances,2011,29:889-895.
[32] Zheng L T, Wei Y L, Gong H Q,et al. Application progress of nanoporous gold in analytical chemistry.Chinese Journal of Analytical Chemistry,2013,41(1):137-144.
[33] Yan X L,Wang X,Zhao P,et al. Xylanase immobilized nanoporous gold as a highly active and stable biocatalyst. Microporous and Mesoporous Materials,2012,161:1-6.
[34] Hakamada M,Takahashi M,Mabuchi M. Enhanced thermal stability of laccase immobilized on monolayer-modified nanoporous Au. Materials Letters,2012,(66) :4-6.
[35] Endo M,Strano S M,Ajayan P M. Potential applications of carbon nanotubes .Topics Appl Physics,2008,111:13-62.
[36] Mohamada N R,Buang N A,Mahat N A,et al.A facile enzymatic synthesis of geranyl propionate by physically adsorbed Candida rugosa lipase onto multi-walled carbon nanotubes.Enzyme and Microbial Technology,2015,72: 49-55.
[37] Boncel S,Zniszczoł A,Szymanska K.Alkaline lipase from Pseudomonas fluorescens non-covalently immobilized on pristine versus oxidised multi-wall carbon nanotubes as efficient and recyclable catalytic systems in the synthesis of Solketal esters.Enzyme and Microbial Technology,2013,53(4):263-270.
[38] Pedrosa V A,Paliwala S,Balasubramanian S,et al.Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes.Colloids and Surfaces B:Biointerfaces,2010,77(1):69-74.
[39] Qiu H J,Li Y,Ji G L,et al. Immobilization of lignin peroxidase on nanoporous gold: enzymatic properties and in situ release of H2O2 by co-immobilized glucose oxidase. Bioresource Technology,2009,100 (11) :3837-3842.
[40] 王艳,聂志勇,姚莉丽,等.纳米磁性壳聚糖微球固定化酵母醇脱氢酶的研究.中国生物工程杂志,2008,28(7):71-77. Wang Y,Nie Z Y,Yao L L,et al.Study of immobilization yeast alcohol dehydrogenase cross-linked magnetic chitosan microsphere. China Biotechnology,2008,28(7):71-77.
[41] 邓涛,余旭亚,徐军伟.磁性高分子微球固定化脂肪酶的研究进展. 化工新型材料,2013,41(11):4-6. Deng T,Yu X Y,Xu W J.Research progress of magnetic polymer microspheres immobilized lipase. New Chemical Materials,2013,41(11):4-6.
[42] Wang X Y,Jiang X P,Yue L,et al.Preparation Fe3O4 chitosan magnetic particles for covalentimmobilization of lipase from Thermomyces lanuginosus. International Journal of Biological Macromolecules,2015,75:44-50.
[43] 余靓,刘飞,Yousaf M Z,等.磁性纳米材料:化学合成、功能化与生物医学应用. 生物化学与生物物理进展,2013,40(10):903-917. Yu L,Liu F,Yousaf MZ,et al.Magnetic nanomaterials: chemical synthesis, functionalization and biomedical applications. Progress in Biochemistry and Biophysics,2013,40(10):903-917.
[44] Wu Y,Wang Y J,Luo G S.In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresource Technology,2009,100(14):3459-3464.
[45] Pospiskova K,Safarik I.Low-cost, easy-to-prepare magnetic chitosan microparticles for enzymes immobilization . Carbohydrate Polymers,2013,96(2):545-548.
[46] Liu M Q,Dai X J,Guan R F,et al. Immobilization of Aspergillus niger xylanase A on Fe3O4-coated chitosan magnetic nanoparticles for xylooligosaccharide preparation. Catalysis Communications,2014,55:6-10.
[47] Liu Y,Jia S Y,Wu Q,et al.Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization.Catalysis Communications,2011,12(8):717-720.
[48] Zhang W J,Qiu J H,Feng H X.Increase in stability of cellulose immobilized on functionalized magnetic nanospheres. Journal of Magnetismand Magnetic Materials,2015,375:117-123.
[49] Song C F,Sheng L Q,Zhang X B.Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles. Applied Microbiology and Biotechnology,2012,96(1):123-132.
[50] Pan C L,Hu B,Li W,et al.Novel and efficient method for immobilization and stabilization of β-D-galactosidase by covalent attachment onto magnetic Fe3O4-chitosan nanoparticles.Journal of Molecular Catalysis B:Enzymatic 2009, 61(3-4):208-215.
[51] Jin X,Li J F,Huang P Y,et al.Immobilized protease on the magnetic nanoparticles used for the hydrolysis of rapeseed meals. Journal of Magnetism and Magnetic Materials,2010,322(14):2031-2037.
[52] Chen S C,Shen D C,Duan K J. Production of fructooligosaccharides using β-fructofuranosidase immobilized onto chitosan-coated magnetic nanoparticles. Journal of the Taiwan Institute of Chemical Engineers,2014, 45(4):1105-1110.
[53] Ju H Y,Kuo C H,Too J R.Optimal covalent immobilization of α-chymotrypsin on Fe3O4-chitosan Nanoparticles. Journal of Molecular Catalysis B: Enzymatic,2012,78:9-15.
[54] Kumar V,Jahan F,Raghuwanshi S,et al. Immobilization of Rhizopus oryzae lipase on magnetic Fe3O4 chitosan beads and its potential in phenolic acids ester synthesis. Biotechnology and Bioprocess Engineering,2013,18:787-795.
[55] Dong Q,Ouyang L M,Liu J W,et al.Efficient synthesis of α-D-glucose-1-phosphate by maltodextrin phosphorylase immobilized on amino-functionalized magnetic nanoparticles .Chinese Journal of Catalysis,2010,31(9-10):1227-1232.
[56] Alex D,Mathew A,Sukumarana R K.Esterases immobilized on aminosilane modified magnetic nanoparticles as a catalyst for biotransformation reactions.Bioresource Technology, 2014,167 :547-550.
[57] Demira A S,Talpura F N,Sopacia S B,et al. Selective oxidation and reduction reactions with cofactor regeneration mediated by galactitol,lactate,and formate dehydrogenases immobilized on magnetic nanoparticles.Journal of Biotechnology,2011, 152(4):176-183.
[58] Chen G,Ma Y H,Su P F.Direct binding glucoamylase onto carboxyl-functioned magnetic nanoparticles. Biochemical Engineering Journal,2012,67:120- 125.
[59] Kalantari M,Kazemeini M,Arpanaei A.Evaluation of biodiesel production using lipase immobilized on magnetic silica nanocomposite particles of various structures. Biochemical Engineering Journal,2013,79:267- 273.
[60] Ozyilmaz G,Gezer E.Production of aroma esters by immobilized Candida rugosa and porcine pancreatic lipase into calcium alginate gel.Journal of Molecular Catalysis B:Enzymatic,2010,64:140-145.
[61] Cheirsilp B,Jeamjounkhaw P,Aran H K.Optimizing an alginate immobilized lipase for monoacylglycerol production by the glycerolysis reaction.Journalof Molecular Catalysis B: Enzymatic,2009,59:206-211.
[62] Hisamatsu K,Shiomi T,Matsuura S I,et al.A-amylase immobilization capacities of mesoporous silicas with different morphologies and surface properties.J Porous Mater,2012,19:95-102.
[63] Onishchenko M I,Tyablikov I A,Knyazeva E E,et al.Modification of MCM-41 and SBA-15 mesoporous silicas by imidazolium ionic liquids.Russian Journal of Physical Chemistry A,2013,87(1):108-113.
[64] Mubarak N M,Wong J R,Tan J W,et al.Immobilization of cellulase enzyme on functionalized multiwallcarbon nanotubes. Journal of Molecular Catalysis B: Enzymatic,2014,107:124-131.
[65] Carlsson N,Gustafsson H,Thörn C,et al. Enzymes immobilized in mesoporous silica:a physical-chemical perspective.Advances in Colloid and Interface Science,2014,205:339-360.
[66] Zhang C D,Luo S M,Chen W.Activity of catalase adsorbed to carbon nanotubes:effects of carbon nanotube surface properties.Talanta,2013,113:142-147.
[67] Li G Y,Huang K L,Jiang Y R,et al.Preparation and characterization of Saccharomyces cerevisiae alcohol dehydrogenase immobilized on magnetic nanoparticles. International Journal of Biological Macromolecules,2008,42(5):405-412.
[68] Zhai Q Z,Sun S J.Preparation, characterization and luminescence of SBA-15 immobilized pepsin.Russian Journal of Physical Chemistry,2014,88(12):2243-2251.
[69] Marta Z B,Tomasz S,Dorota C,et al.Magnetic nanoparticles with surfaces modified with chitosan-poly for lipase immobilization.Applied Surface Science,2014,288:641-648.
[70] Kondyurin A,Levchenko I,Han Z J,et al.Hybrid graphite film-carbon nanotube platform for enzyme immobilization and protection.CARBON,2013,65:287-295.
[71] Kuo C H,Liu Y C,Chang C M,et al. Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles.Carbohydrate Polymers, 2012,87:2538-2545.
[72] Zou B,Song C Y,Xu X P,et al. Enhancing stabilities of lipase by enzyme aggregate coatingimmobilized onto ionic liquid modified mesoporous materials.Applied Surface Science,2014,311:62-67.
[73] Gomez J M,Romero M D,Fernández T M.Immobilization of β-Glucosidase on carbon nanotubes.Catalysis Letters,2005,101(3-4):275-278.
[74] 邱华军,徐彩霞,姬广磊,等. 漆酶在纳米多孔金上的固定化及其酶学性质研究.化学学报,2008,66(18):2075~2080. Qiu H J,Xu C X,Ji G L,et al. Immobilization of laccase on nanoporous gold and its enzymatic properties.Acta Chimica Sinica, 2008,66(18):2075-2080.
[75] Wang J Z,Zhao G H,Jing L Y,et al.Facile self-assembly of magnetite nanoparticles on three-dimensional graphene oxide-chitosan composite for lipase immobilization. Biochemical Engineering Journal,2015,98:75-83.
[1] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[2] TANG Meng-tong,WANG Zhao-guan,LI Jiao-jiao,QI Hao. Application of Terminal Deoxynucleotidyl Transferase in Biosensors and Nucleic Acid Synthesis[J]. China Biotechnology, 2021, 41(5): 51-64.
[3] YANG Yun-song,LIANG Jin-hua,YANG Xiao-rui,MA Yi-ming,JIN Shuang,SUN Yao-yao,ZHU Jian-liang. Research Progress in Oxidative Desulfurization of Diesel Oil Catalyzed by Enzymes[J]. China Biotechnology, 2021, 41(10): 109-115.
[4] DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate[J]. China Biotechnology, 2020, 40(4): 49-58.
[5] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[6] Feng-qin GONG,Qi-shun LIU,Hai-dong TAN,hua JIN,Cheng-yu TAN,Heng YIN. Immobilization of 5-Hydroxymethylfurfural Oxidase within MOFs for Catalysis[J]. China Biotechnology, 2019, 39(6): 41-47.
[7] Lin-jie XU,Pei lei LIU,Wen-long LI,Zhuo-jing SUN,Gui-wen SONG. Analysis of the Recent Trends of International Labeling Policies for Genetically Modified Products and the Enlightenment to China’s Labeling Management[J]. China Biotechnology, 2018, 38(9): 94-98.
[8] You-hua WANG,Jing-jing CAI,Ming YANG,Tian ZHANG,Hong-mei REN,Wan-nong ZOU,Guo-qing SUN. Global Patent Analysis and Technology Prospect of Genetically Modified Soybean[J]. China Biotechnology, 2018, 38(2): 116-125.
[9] Shuai CUI,Zuo-ping WANG,Jiang-hui YU,Guo-ying XIAO. Event-specific Detection Methods of Genetically Modified Rice BPL9K-2[J]. China Biotechnology, 2018, 38(11): 32-41.
[10] XU Zhen-yu, REN Hong-yan, BI Yan-zhen, ZHENG Xin-min, LI Li, ZHANG Jia-lan. Establishment of the Single-cell PCR System and Its Application in the Target-activity Detection of CRISPR/Cas9 System[J]. China Biotechnology, 2017, 37(2): 74-80.
[11] XIA Qi-yu, LI Mei-ying, YANG Xiao-liang, XIAO Su-sheng, HE Ping-ping, GUO An-ping. Immunochromatography Test Strip and Its Applications in Detection of Genetically Modified Organisms[J]. China Biotechnology, 2017, 37(2): 101-110.
[12] Shan XU,Ren-qiang LI,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng Hu. Ethylene Glycol Diglycidyl Ether Cross-linked with Sodium Alginate- carboxymethyl Cellulose to Immobilize Lipase[J]. China Biotechnology, 2017, 37(12): 77-83.
[13] SHEN Ping, ZHANG Qiu-yan, LIN You-hua, LI Wen-long, LI Ang, SONG Gui-wen. Thinking to Promote the Industrialization of Genetically Modified Corn of Our Country[J]. China Biotechnology, 2016, 36(4): 24-29.
[14] TAO Chang-li, HUANG Shu-lin. Advances in Research on Optimization of Transgenic TCR Pairing in TCR Gene Therapy[J]. China Biotechnology, 2016, 36(3): 87-92.
[15] ZHU Qiao yan. Genetically Modified Rice Tasting: Public Participation in Science in Chinese Context[J]. China Biotechnology, 2016, 36(11): 122-130.