Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (3): 125-131    DOI: 10.13523/j.cb.20140318
    
Improve Microorganism Cell Permeability for Whole-Cell Bioprocess:Methods and Strategies
ZHAO Wei-rui1, SHENG Hu2, JUN Huang3, MEI Le-he1,2
1. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;
2. School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China;
3. School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
Download: HTML   PDF(474KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Using whole cell catalysts have many advantages, such as elimination of the need for tedious, expensive enzyme isolations and purification, and ability to conduct process requiring multiple pathways and cofactor regenerations. But the efficient of whole cell biocatalysis and biotransformation are severely compromised owning to the mass-transfer resistance of the cell wall and membrane towards the substrate and product. So it is important to use cell permeabilization methods to improve cell permeability to enhance cell catalysts efficiency. Cell permeabilization technology can improve cell envelope permeability without total destruction cell integrity. Nowadays, various cell permeabilization methods such as permeabilization agent method, physical treatment and molecular engineering have been developed. This review will introduce the kinds of permeabilization methods and strategies.

Key wordsCell permeability      Microorganism      Whole cell      Biocatalysis and biotransformation     
Received: 07 August 2013      Published: 25 March 2014
ZTFLH:  Q819  
Cite this article:

ZHAO Wei-rui, SHENG Hu, JUN Huang, MEI Le-he. Improve Microorganism Cell Permeability for Whole-Cell Bioprocess:Methods and Strategies. China Biotechnology, 2014, 34(3): 125-131.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140318     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I3/125

[1] Ni Y, Chen R R. Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. Biotechnology and Bioengineering, 2004, 87(6): 804-811.
[2] Vanderwerf M J, Hartmans S, Vandentweel W. Permeabilization and lysis of Pseudomonas pseudoalcaligenes cells by Triton X-100 for efficient production of D-malate. Applied Microbiology And Biotechnology, 1995, 43(4): 590-594.
[3] Chen R R. Permeability issues in whole-cell bioprocesses and cellular membrane engineering. Applied Microbiology and Biotechnology, 2007, 74(4): 730-738.
[4] Flores M V, Voget C E, Ertola R. Permeabilization of yeast-cells (Kluyveromyces) with organic-solvents. Enzyme and Microbial Technology, 1994, 16(4): 340-346.
[5] Felix H. Permeabilized cells. Anal Biochem, 1982, 120(2): 211-234.
[6] De Leon A, Garcia B, de la Rosa A, et al. Periplasmic penicillin G acylase activity in recombinant Escherichia coli cells permeabilized with organic solvents. Process Biochemistry, 2003, 39(3): 301-305.
[7] Cortez D V, Roberto I C. CTAB, Triton X-100 and freezing-thawing treatments of Candida guilliermondⅡ: Effects on permeability and accessibility of the glucose-6-phosphate dehydrogenase, xylose reductase and xylitol dehydrogenase enzymes. New Biotechnology, 2012, 29(2SI): 192-198.
[8] Mirbagheri M, Nahvi I, Emtiazi G, et al. Enhanced production of citric acid in Yarrowia lipolytica by Triton X-100. Applied Biochemistry and Biotechnology, 2011, 165(3-4): 1068-1074.
[9] Nikaido H, Vaara M. Stages of polymyxin B interaction with the Escherichia coli cell envelope. Antimicrob Agents Chemother, 2000, 44(11): 2969-2978.
[10] Melanie D, Valerie L, Catherine G D, et al. Hen egg white lysozyme permeabilizes Escherichia coli outer and inner membranes. Journal of Agricultural and Food Chemistry, 2013, 61: 9922-9929
[11] Yun J Y, Lee J E, Yang K M, et al. Ethambutol-mediated cell wall modification in recombinant Corynebacterium glutamicum increases the biotransformation rates of cyclohexanone derivatives. Bioprocess and Biosystems Engineering, 2012, 35(1-2SI): 211-216.
[12] Bansal-Mutalik R, Gaikar V G. Cell permeabilization for extraction of penicillin acylase from Escherichia coli by reverse micellar solutions. Enzyme and Microbial Technology, 2003, 32(1): 14-26.
[13] Cheng S W, Wei D Z, Song Q X, et al. Immobilization of permeabilized whole cell penicillin G acylase from Alcaligenes faecalis using pore matrix crosslinked with glutaraldehyde. Biotechnology Letters, 2006, 28(14): 1129-1133.
[14] Kumar A, Singh S, Poddar P, et al. Effect of cultural conditions and media constituents on production of Penicillin V acylase and CTAB treatment to enhance whole-cell enzyme activity of Rhodotorula aurantiaca (NCIM 3425). Applied Biochemistry and Biotechnology, 2009, 157(3): 463-472.
[15] Kaehne F, Buchhaupt M, Schrader J. A recombinant α-dioxygenase from rice to produce fatty aldehydes using E. coli. Applied Microbiology and Biotechnology, 2011, 90(3): 989-995.
[16] Galabova D, Tuleva B, Spasova D. Permeabilization of Yarrowia lipolytica cells by Triton X-100. Enzyme and Microbial Technology, 1996, 18(1): 18-22.
[17] Sikkema J, Debont J, Poolman B. Interactions of cyclic hydrocarbons with biological-membranes. Journal of Biological Chemistry, 1994, 269(11): 8022-8028.
[18] Liu Y, Hama H, Fujita Y, et al. Production of S-lactoylglutathione by high activity whole cell biocatalysts prepared by permeabilization of recombinant Saccharomyces cerevisiae with alcohols. Biotechnology and Bioengineering, 1999, 64(1): 54-60.
[19] Kumar A, Pundle A. Effect of organic solvents on cell-bound penicillin V acylase activity of Erwinia aroideae (DSMZ 30186): A permeabilization effect. Journal of Molecular Catalysis B-Enzymatic, 2009, 57(1-4): 67-71.
[20] Choi K O, Song S H, Yoo Y J. Permeabilization of Ochrobactrum anthropi SY509 cells with organic solvents for whole cell biocatalyst. Biotechnology and Bioprocess Engineering, 2004, 3(9): 147-150.
[21] Malik M, Ganguli A, Ghosh M. Modeling of permeabilization process in Pseudomonas putida G7 for enhanced limonin bioconversion. Applied Microbiology and Biotechnology, 2012, 95(1): 223-231.
[22] Canovas M, Torroglosa T, Iborra J L. Permeabilization of Escherichia coli cells in the biotransformation of trimethylammonium compounds into L-carnitine. Enzyme and Microbial Technology, 2005, 37(3): 300-308.
[23] Vaara M. Agents that increase the permeability of the outer-membrane. Microbiological Reviews, 1992, 56(3): 395-411.
[24] Di Lernia I, Schiraldi C, Generoso M, et al. Trehalose production at high temperature exploiting an immobilized cell bioreactor. Extremophiles, 2002, 6(4): 341-347.
[25] Breedveld M W, Zevenhuizen L, Zehnder A. Osmotically induced oligosaccharide and polysaccharide synthesis by Rhizobium-Meliloti Su-47. Journal of General Microbiology, 1990, 136(12): 2511-2519.
[26] Numanoglu Y, Sungur S. β-Galactosidase from Kluyveromyces lactis cell disruption and enzyme immobilization using a cellulose-gelatin carrier system. Process Biochemistry, 2004, 39(6): 703-709.
[27] Rapoport N, Smirnov A I, Timoshin A, et al. Factors affecting the permeability of Pseudomonas aeruginosa cell walls toward lipophilic compounds: Effects of ultrasound and cell age. Archives of Biochemistry and Biophysics, 1997, 344(1): 114-124.
[28] Breedveld M W, Zevenhuizen L, Zehnder A. Synthesis of cyclic beta-(1, 2)-glucans by Rhizobium-leguminosarum biovar trifolⅡ ta-1-factors influencing excretion. Journal of Bacteriology, 1992, 174(20): 6336-6342.
[29] Plokhov A Y, Gusyatiner M M, Yampolskaya T A, et al. Preparation of gamma-aminobutyric acid using E. coli cells with high activity of glutamate decarboxylase. Applied Biochemistry and Biotechnology, 2000, 88(1-3): 257-265.
[30] Matsumoto T, Takahashi S, Kaieda M, et al. Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Applied Microbiology and Biotechnology, 2001, 57(4): 515-520.
[31] Canovas M, Torroglosa T, Kleber H P, et al. Effect of salt stress on crotonobetaine and D(+)-carnitine biotransformation into L(-)-carnitine by resting cells of Escherichia coli. Journal of Basic Microbiology, 2003, 43(4): 259-268.
[32] Bar R. Ultrasound enhanced bioprocesses: cholesterol oxidation by Rhodococcus erythropolis.Biotechnology and Bioengineering, 1998, 32(5), 655-663.
[33] Ni Y, Chen R R. Lipoprotein mutation accelerates substrate permeability-limited toluene dioxygenase-catalyzed reaction. Biotechnology Progress, 2005, 21(3): 799-805.
[34] Ni Y, Mao Z C, Chen R R. Outer membrane mutation effects on UDP-glucose permeability and whole-cell catalysis rate. Applied Microbiology and Biotechnology, 2006, 73(2): 384-393.
[35] Ni Y, Reye J, Chen R R. Ipp deletion as a permeabilization method. Biotechnology and Bioengineering. 2007, 97(6): 1347-1356.
[36] Dassler T, Maier T, Winterhalter C, et al. Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway. Molecular Microbiology, 2000, 36(5): 1101-1112.
[37] Franke I, Resch A, Dassler T, et al. YfiK from Escherichia coli promotes export of O-acetylserine and cysteine. Journal of Bacteriology, 2003, 185(4): 1161-1166.
[38] Wiriyathanawudhiwong N, Ohtsu I, Li Z, et al. The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli. Applied Microbiology and Biotechnology, 2009, 81(5): 903-913.
[39] Yamada S, Awano N, Inubushi K, et al. Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli. Applied and Environmental Microbiology, 2006, 72(7): 4735-4742.
[40] Chen R R, Guo X. Methods and Compositions for Increasing Membrane Permeability. USA:US20110009291A1.2011-04-14.
[1] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[2] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[3] WU Hong-xuan, YANG Jin-hua, SHEN Pei-jie, LI Qing-chen, HUANG Jian-zhong, QI Feng. Study on the Production of Indole-3-acetic Acid Using E. coli Cell Factory[J]. China Biotechnology, 2021, 41(1): 12-19.
[4] LV Xue-qin, JIN Ke, LIU Jia-heng, CUI Shi-xiu, LI Jiang-hua, DU Guo-cheng, LIU Long. Quantitative Analysis of Membrane Ordering of Living Industrial Model Microorganisms[J]. China Biotechnology, 2021, 41(1): 20-29.
[5] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[6] GAO Xiao-peng,HE Meng-chao,XU Ke,LI Chun. Research Progress on pH Regulation in the Process of Industrial Microbial Fermentation[J]. China Biotechnology, 2020, 40(6): 93-99.
[7] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[8] CAO Bi-pu,MIAO Li-hua,GUO Bao-yan,HE Li-ping. The Feasibility Analysis That Nanopore Sequencing Technology Is Applied to Food Microbiological Detection[J]. China Biotechnology, 2018, 38(12): 91-98.
[9] Zheng-san ZUO,Dong-sheng GUO,Xiao-jun JI,Ping SONG,He HUANG. Polyunsaturated Fatty Acids and Their Derivatives in the Intestinal Tract:a Review[J]. China Biotechnology, 2018, 38(11): 66-75.
[10] SHI Gui-qin, ZHOU Wen-shan, REN Fei. Research Progress on Increasing SOD Production by Microorganism Fermentation[J]. China Biotechnology, 2017, 37(4): 115-124.
[11] WU Lin-huan, LU Zhen-ming, GONG Jin-song, SHI Jin-song, XU Zheng-hong. Integrating Distributed Heterogeneous Food Microorganism Data by Semantic Web Technology[J]. China Biotechnology, 2017, 37(3): 124-132.
[12] LI Xiao-bo, LIU Xue, ZHAO Guang-rong. Advances on Flavonoid Glycosides Production of Engineered Microorganisms[J]. China Biotechnology, 2016, 36(8): 105-112.
[13] CAO Ying-ying, DENG Dun, XIA Fang-liang, SUN Ai-jun, ZHANG Yun, HU Yun-feng. Utilization of a Marine Microbial Esterase in the Enantio-selective Preparation of (R)-Ethyl 2-chloropropionate[J]. China Biotechnology, 2016, 36(12): 59-65.
[14] FANG Li xia, CAO Ying xiu, SONG Hao. Engineering Escherichia coli to Synthesize Free Fatty Acids: A Recent Progress[J]. China Biotechnology, 2016, 36(11): 90-97.
[15] HU Zong-fu, ZHU Hong-ji. Application of Phosphate Solubilizing Yeast Pichia farinose FL7 in Phytoextraction of Nickel Contaminated Soil[J]. China Biotechnology, 2015, 35(11): 36-45.