Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (02): 115-119    DOI: Q819
    
A Novel Technology for Removing Potential Risks from Genetically Modified Plants
National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants,Ministry of Education, Beijing Forestry University, Beijing 100083, China
Download: HTML   PDF(829KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Scientists have been searching an effective tool for solving the safety issue of GM (genetically modified) crops for many years. The group led by Chinese American scientist Yi Li, a professor at University of Connecticut, made a great breakthrough in this field after 6 years’ intensive research: his group published the “Gene-deletor” technology in 2007. The technology was developed from two recombination systems Cre/LoxP and FLP/FRT, and FLP/Cre was driven by Organ/Tissue-specific promoter, all transgenic foreign genes will be thoroughly removed from pollen, fruit and seed after they have accomplished function. It could effectively prevent GM gene flow into non-biotech crops or weeds, and may help alleviate public concerns on ecological risks and food safety caused by GM plants. Here, we introduce the concept, principle of “gene-deletor” technology and discuss its applications in genetic engineering research.



Key words“Gene-deletor&rdquo      technology      Genetically Modified Crops      Ecological risk      Food safety.     
Received: 07 December 2009      Published: 26 February 2010
Cite this article:

AN Xin-Min, JING Yan-Ping, LIU Jun-Mei, ZHANG Zhi-Yi. A Novel Technology for Removing Potential Risks from Genetically Modified Plants. China Biotechnology, 2010, 30(02): 115-119.

URL:

https://manu60.magtech.com.cn/biotech/Q819     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I02/115

[1] Losey J E, Rayor L S, Carter M E. Transgenic pollen harmsmonarch larvae. Nature, 1999, 399: 214. 
[2] Quist D, Chapela I H. Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature, 2001, 414: 541543. 
[3] Orson J. Gene stacking in herbicide tolerant oilseed rape: lessons from the North American experience. Engl Nat Res Rep, 2002, 443: 117. 
[4] Kremer R J, Means N E, Kim S. Glyphosate affects soybean root exudation and rhizosphere microorganisms. Int J Environ Anal Chem, 2005, 85 (15):11651174. 
[5] Mariani C, Debeuckeleer M, Trueltner J, et al. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature, 1990, 347:737741. 
[6] Paoletti M G, Pimentel D. Genetic engineering in agriculture and the environment. Bioscience, 1996, 46: 665673. 
[7] Daniell H. Molecular strategies for gene containment in transgenic crops. Nature Biotechnol, 2002, 20:581586. 
[8] Daniell H, Kumar S, Duformantel N. Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol, 2005, 23: 238245. 
[9] Muhammad S K. Plant biology: Engineered male sterility. Nature, 2005, 436:783785. 
[10] Oliver M J, Quisenberry J E, Trolinder N L G.Control of plant gene expression.US,5723765,1998. 
[11] Bock R. Transgenic plastids in basic research and plant biotechnology. J Mol Biol, 2001, 12: 425438. 
[12] Grevich J, Daniell H. Chloroplast genetic engineering: Recent advances and perspectives. Crit Rev Plant Sci, 2005, 24:1?25. 
[13] Daniell H. Chloroplast genetic engineering. Biotechnol J, 2006, 1:2633. 
[14] Komari T, Hiei Y, Saito Y. et al. Vectors carrying two separate TDNAs for cotransformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J, 1996, 10(1):165174. 
[15] Kolb A F. Selectionmarkerfree modification of the murine betacasein gene using a 1ox2722 site. Annl Biochem, 2001, 290: 260271. 
[16] Hare P D, Chua N H. Excision of selectable marker genes from transgenic plants. Nature Biotechnol, 2002, 20:575580 
[17] Puchta H. Markerfree transgenic plants. Plant Cell Tiss Org Cult, 2003, 74: 123134. 
[18] Klaus S M, Huang F C, Golds T J, et al. Generation of markerfree plastid transformants using a transiently cointegrated selection gene. Nature Biotechnol, 2004, 22(2):225229. 
[19] Srivastava V, Ow D W. Markerfree sitespecific gene integration in plants. Trends Biotechnol, 2004, 22(12):627629. 
[20] Verweire D, Verleyen K, Buck S D, et al. Markerfree transgenic plants through genetically programmed autoexcision.Plant Physiol, 2007, 145(4): 12201231. 
[21] GeneDeletor web: http://www.isb.vt.edu/articles/jun0701.htm. 
[22] Luo K, Duan H, Zhao D G. et al. 'GMgenedeletor': fused loxPFRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seeds of tobacco plants. Plant Biotech J, 2007, 5(2): 263274. 
[23] Odell J T, Russell S H, Sauer B L, et al.Sitespecific recombination of DNA in plant cells.US, 5658772,1997. 
[24] 李宏韬, 赵淑青, 赵彦修, 等. 叶绿体基因工程简介. 遗传, 2003, 25(4):495498. Li H T, Zhao S Q, Zhao Y X, et al.Hereditas, 2003, 25(4):495498. 
[25] 苏涛, 詹亚光, 韩梅, 等. 叶绿体基因工程:一种植物生物技术的新方法. 生物工程学报, 2005, 21(4):674680. Su T, Zhan Y G, Han M,et al.Chin J Biotech, 2005, 21(4):674680. 
[26] Li Y, Duan H, Smith W. Genedeletor:A new tool to address concerns over GM crops. ISB News Report,2007, http://www.isb.vt.edu/news/2007/news07.jun.htm. 
[27] Stewart C N, Halfhill M D, Warwick S I. Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet, 2003, 4(10): 806817. 
[28]Djukanovic V, Lenderts B, Bidney D, et al. A Cre:FLP fusion protein recombines FRT or loxP sites in transgenic maize plants. Plant Biotech J, 2008, 6(8): 770781. 
[29] Justman M. Engineered Agriculture, 2008, (http://www.aic.ca/issues/future.cfm).

[1] LIU Xu-xia,YANG An-ke. An Analysis of the U.S. SECURE Rule and Its Enlightenment to China[J]. China Biotechnology, 2021, 41(9): 126-135.
[2] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[3] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[4] HU Yuan-lei,CHEN Yan-cheng,PU Run,YAO Wei-hao,ZHANG Hong-xiang. Bio-tech Startup Incubation Best Practice in the United Kingdom and Suggestion[J]. China Biotechnology, 2021, 41(4): 100-105.
[5] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[6] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[7] WU Han-rong,WANG Ying,YANG Li,GE Yao,FAN Ling. Current Situation and Development Suggestions of China’s Biotechnology Base Platform[J]. China Biotechnology, 2021, 41(11): 119-123.
[8] XIAO Yun-xi,ZHANG Jun-he,YANG Wen-wen,CHENG Hong-wei. Research Progress of Human Diploid Cells for Vaccine Production[J]. China Biotechnology, 2021, 41(11): 74-81.
[9] WU Han-rong,WANG Ying,LI Su-ning,SANG Xiao-dong,FAN Ling. Policy Research on the Construction of Biotechnology Base Platforms in China[J]. China Biotechnology, 2021, 41(10): 127-131.
[10] SONG Yi-mei,JIA Xiu-wei,LI Shu-biao,GAO Cui-juan. Industrial Microorganism of Yarrowia lipolytica and Its Industrial Amplicaiton[J]. China Biotechnology, 2020, 40(9): 77-86.
[11] WANG Xiao-li. The Age of Biosecurity: New Biotechnology Revolution and National Biosecurity Governance[J]. China Biotechnology, 2020, 40(9): 95-109.
[12] ZHANG Ye,WANG Ji-ping,SU Tian-ming,HE Tie-guang,WANG Jin,ZENG Xiang-yang. Research Progress on Degradation of Lignocellulosic Biomass by Screening Microorganisms[J]. China Biotechnology, 2020, 40(6): 100-105.
[13] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[14] ZHAO Jian-min,ZHANG Si-yuan. Review of Patented Bacteriophage Treatment Technology for Drug-Resistant Bacteria Infection[J]. China Biotechnology, 2020, 40(10): 104-111.
[15] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.