Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (7): 97-102    DOI:
    
Antimicrobial Peptides:Design and Application
CHEN Yu-ting1, WANG Chang-hai2, YAN Xiu-wen3, LI Jun-sheng1
1. College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
2. College of Natural Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095,China;
3. College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
Download: HTML   PDF(965KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Antimicrobial peptide(AMP) is an integral part of the innate immune system in living organisms that protect hosts from invading pathogenic microorganism. AMPs have strong antimicrobial activity against a wide-range of species, including gram-positive and gram-negative bacteria, fungi, and viruses.In order to overcome the problem of resistance, cationic antimicrobial peptides are currently being considered as a potential alternative for antibiotics. This review focuses on the mechanism and application of the antimicrobial peptides and discusses the design of molecular targeted antimicrobial peptides.

Key wordsAntimicrobial peptide      Mechanisms      Design of molecular targeted antimicrobial peptides(AMPS)     
Received: 25 February 2013      Published: 25 July 2013
ZTFLH:  Q514.3  
Cite this article:

CHEN Yu-ting, WANG Chang-hai, YAN Xiu-wen, LI Jun-sheng. Antimicrobial Peptides:Design and Application. China Biotechnology, 2013, 33(7): 97-102.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I7/97

[1] Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 2010, 74(3): 417-433.
[2] Arias C A, Murray B E. The rise of the Enterococcus: beyond vancomycin resistance. Nature Reviews Microbiology, 2012, 10(4): 266-278.
[3] Theuretzbacher U. Future antibiotics scenarios: is the tide starting to turn? International Journal of Antimicrobial Agents, 2009, 34(1): 15-20.
[4] Vilhena C, Bettencourt A. Daptomycin: A Review of Properties, Clinical Use, Drug Delivery and Resistance. Mini Reviews in Medicinal Chemistry, 2012, 12(3): 202.
[5] Arias C A, Murray B E. Antibiotic-resistant bugs in the 21st century—a clinical super-challenge. New England Journal of Medicine, 2009, 360(5): 439-443.
[6] Nikaido H. Multidrug resistance in bacteria. Annual review of biochemistry, 2009, 78:119-146.
[7] Freire-moran L, Aronsson B, Manz C, et al. Critical shortage of new antibiotics in development against multidrug-resistant bacteria—Time to react is now. Drug Resistance Updates, 2011, 14(2): 118-124.
[8] Matsuzaki K. Control of cell selectivity of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009, 1788(8): 1687-1692.
[9] Altincicek B, Linder M, Linder D, et al. Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infection and Immunity, 2007, 75(1): 175-183.
[10] Li Y M, Xiang Q, Zhang Q H, et al. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides, 2012, 37(2):207-215.
[11] 刘诚, 黎满香, 卢帅, 等. 抗菌肽研究进展. 动物医学进展, 2011, 32(3): 94-99. Liu C, Li M X, Lu S, et al. Progress on antibacterial peptide. Progress in Veterinary Medicine, 2011,32(3):94-99.
[12] Brogden N K, Brogden K A. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? International Journal of Antimicrobial Agents, 2011, 38(3): 217-225.
[13] Parachin S, Mulder C, Viana B, et al. Expression systems for heterologous production of antimicrobial peptides. Peptides, 2012, 38(2): 446-456.
[14] Li C, Blencke H M, Paulsen V, et al. Powerful workhorses for antimicrobial peptide expression and characterization. Bioengineered, 2010, 1(3): 217-220.
[15] Maróti G, Kereszt A, Kondorosi é, et al. Natural roles of antimicrobial peptides in microbes, plants and animals. Research in Microbiology, 2011, 162(4): 363-374.
[16] Yang P, Ramamoorthy A, Chen Z. Membrane orientation of MSI-78 measured by sum frequency generation vibrational spectroscopy. Langmuir, 2011, 27(12): 7760-7767.
[17] Pandey B K, Srivastava S, Singh M, et al. Inducing toxicity by introducing a leucine-zipper-like motif in frog antimicrobial peptide, magainin 2. Biochemical Journal, 2011, 436(3): 609-620.
[18] 黎观红, 洪智敏, 贾永杰, 等. 抗菌肽的抗菌作用及其机制. 动物营养学报, 2011, 23(4): 546-555. Li G H, Hong ZH M, Jiao Y J, et al. Activities and mechanisms of action of antimicrobial peptides. Chinese Journal of Animal Nutrition, 2011, 23(4): 546-555.
[19] 岳道友. 抗菌肽研究进展. 河南畜牧兽医: 综合版, 2009, 30(4): 9-11. Yue D Y. Henan Journal of Animal Husbandry and Veterinary Medicine, 2009, 30(4): 9-11.
[20] Sengupta D, Leontiadou H, Mark A E, et al. Toroidal pores formed by antimicrobial peptides show significant disorder. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2008, 1778(10): 2308-2317.
[21] Rotem S, Mor A. Antimicrobial peptide mimics for improved therapeutic properties. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009, 1788(8): 1582-1592.
[22] 顾琳娜, 顾昊. 抗菌肽的研究进展. 中草药, 2009, 6(40): 1004-1004. Gu L N, Gu H. Chinese Herbal Medicines, 2009, 6(40): 1004-1004.
[23] Bozelli J C, Sasahara E T, Pinto M R S, et al. Effect of Head Group and Curvature on Binding of the Antimicrobial Peptide Tritrpticin to Lipid Membranes. Chemistry and Physics of Lipids, 2011, 165(4):365-373.
[24] Jean-franois F, Elezgaray J, Berson P, et al. Pore formation induced by an antimicrobial peptide: electrostatic effects. Biophysical journal, 2008, 95(12): 5748-5756.
[25] Riedl S, Zweytick D, Lohner K. Membrane-active host defense peptides-challenges and perspectives for the development of novel anticancer drugs. Chemistry and Physics of Lipids, 2011, 164(8): 766-781.
[26] 张晓巩, 方超, 白卉, 等. 抗菌肽作用机制的研究进展. 生理科学进展, 2011, 42(1): 11-15. Zhang X G, Fang c, Bai h, et al. Researchprogress on mechanism of antimicrobial peptides. Progress in Physiological Science, 2011, 42(1): 11-15.
[27] Thøgersen L, Schiøtt B, Vosegaard T, et al. Peptide aggregation and pore formation in a lipid bilayer: a combined coarse-grained and all atom molecular dynamics study. Biophysical journal, 2008, 95(9): 4337-4347.
[28] Xie Y, Fleming E, Chen J L, et al. Effect of proline position on the antimicrobial mechanism of buforin II. Peptides, 2011, 32(4): 677-682.
[29] Matsuzaki K, Sugishita K, Fujii N, et al. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry, 1995, 34(10): 3423-3429.
[30] Glukhov E, Stark M, Burrows L L, et al. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. Journal of Biological Chemistry, 2005, 280(40): 33960-33967.
[31] Umeyama M, Kira A, Nishimura K, et al. Interactions of bovine lactoferricin with acidic phospholipid bilayers and its antimicrobial activity as studied by solid-state NMR. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2006, 1758(9): 1523-1528.
[32] Muhle S A, Tam J P. Design of Gram-negative selective antimicrobial peptides. Biochemistry, 2001, 40(19): 5777-5785.
[33] Eckert R, Qi F, Yarbrough D K, et al. Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp. Antimicrobial agents and chemotherapy, 2006, 50(4): 1480-1488.
[34] Kristiansen P E, Fimland G, Mantzilas D, et al. Structure and mode of action of the membrane-permeabilizing antimicrobial peptide pheromone plantaricin A. Journal of Biological Chemistry, 2005, 280(24): 22945-22950.
[35] Qiu X Q, Zhang J, Wang H, et al. A novel engineered peptide, a narrow-spectrum antibiotic, is effective against vancomycin-resistant Enterococcus faecalis. Antimicrobial agents and chemotherapy, 2005, 49(3): 1184-1189.
[36] Loesche W J. Role of Streptococcus mutans in human dental decay. Microbiological reviews, 1986, 50(4): 353-380.
[37] Eckert R, He J, Yarbrough D K, et al. Targeted killing of Streptococcus mutans by a pheromone-guided "smart" antimicrobial peptide. Antimicrobial agents and chemotherapy, 2006, 50(11): 3651-3657.
[38] Banas J A. Virulence properties of Streptococcus mutans. Front Biosci, 2004, 9(1-3): 1267-1277.
[39] Lee I H, Zhao C, Cho Y, et al. Clavanins,-helical antimicrobial peptides from tunicate hemocytes. FEBS Letters, 1997, 400(2): 158-162.
[40] Li L, He J, Eckert R, et al. Design and Characterization of an Acid-Activated Antimicrobial Peptide. Chemical Biology & Drug Design, 2010, 75(1): 127-132.
[41] Juretic D, Vukievic D, Petrov D, et al. Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides. European Biophysics Journal, 2011, 40(4): 371-385.
[42] Chou H T, Kuo T Y, Chiang J C, et al. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. International Journal of Antimicrobial Agents, 2008, 32(2): 130-138.
[43] Frecer V, Ho B, Ding J L. De novo design of potent antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 2004, 48(9): 3349-3357.
[44] 李建华, 宋丰贵, 王华. 肽类抗生素选择性作用机制研究进展与评价. 中国新药与临床杂志, 2008, 27(1): 41-46 Li J H, Song F G, Wang H. Chinese Journal of New Drugs and Clinical Remedies, 2008, 27(1): 41-46.
[45] Hu Y, Aksoy S. An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans. Insect Biochemistry and Molecular Biology, 2005, 35(2): 105-115.
[46] Walsh T R. Emerging carbapenemases: a global perspective. International Journal of Antimicrobial Agents, 2010, 36(3): S8-S14.
[47] Lee S J, Schlesinger P H, Wickline S A, et al. Interaction of Melittin Peptides with Perfluorocarbon Nanoemulsion Particles. The Journal of Physical Chemistry B, 2011, 115(51): 15271-15279.
[48] Pompilio A, Scocchi M, Pomponio S, et al. Antibacterial and anti-biofilm effects of cathelicidin peptides against pathogens isolated from cystic fibrosis patients. Peptides, 2011, 32(9): 1807-1814.
[49] Marr A K, Gooderham W J, Hancock R E W. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Current Opinion in Pharmacology, 2006, 6(5): 468-472.
[50] Wu Y, He Y, Ge X. Functional characterization of the recombinant antimicrobial peptide Trx-Ace-AMP1 and its application on the control of tomato early blight disease. Applied Microbiology and Biotechnology, 2011, 90(4): 1303-1310.
[51] Iquebal M, Rai A. Biotic stress resistance in agriculture through antimicrobial peptides. Peptides, 2012,36(2):322-330.
[52] Muthaiyan A, Limayem A, Ricke S C. Antimicrobial strategies for limiting bacterial contaminants in fuel bioethanol fermentations. Progress in Energy and Combustion Science, 2011, 37(3): 351-370.
[53] De Arauz L J, Jozala A F, Mazzola P G, et al. Nisin biotechnological production and application: a review. Trends in Food Science & Technology, 2009, 20(3): 146-154.
[54] Da Silva Malheiros P, Daroit D J, Brandelli A. Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Science & Technology, 2010, 21(6): 284-292.
[55] Glinel K, Thebault P, Humblot V, et al. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomaterialia, 2012, 8(5): 1670-1684.
[1] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[2] TANG Xin,MAO Xin-fang,MA Bin-yun,GOU Ping. Antimicrobial Peptides: Current Status and Future Challenges[J]. China Biotechnology, 2019, 39(8): 86-94.
[3] WEN Sai, LIU Huai-ran, HAN Xu, LI Tian, XING Xuan. Research Advances in the Design of Synthetic Antimicrobial Peptides with Enhanced Therapeutic Potentials[J]. China Biotechnology, 2016, 36(8): 89-98.
[4] GUO Zheng-rong, PENG Huan-yan, KANG Ji-wen, JIANG Hui-qing, SUN Dian-xing. Cell Penetrating Peptides: Research Progress of a Novel Non-viral Vectors[J]. China Biotechnology, 2016, 36(6): 100-106.
[5] LIU Xiao-ming, JIANG Ning, ZHANG Ai-zhong, CAI Peng. Expression of Hybrid Antimicrobial Peptides in Pichia Yeast and Identification of Its Biological Activity[J]. China Biotechnology, 2016, 36(2): 81-89.
[6] WU Chun-xu, LU Xue-mei, JIN Xiao-bao, ZHU Jia-yong. Advances in Research on Molecular Design of Cecropin-like Peptides[J]. China Biotechnology, 2016, 36(2): 96-100.
[7] CHEN Jie-mei, ZHANG Can-hui, AI Tian. Study of the Antibacterial Peptides Produced by Bacillus amyloliquefaciens KN-BL-1 and Its Fermented Soybean Meal[J]. China Biotechnology, 2014, 34(10): 61-66.
[8] WU Ru-juan, ZHANG Ri-jun. The Progress of Hybrid Peptides on Design and Biological Activity[J]. China Biotechnology, 2013, 33(9): 94-100.
[9] CHEN Wu, LI Ding-jun, DING Yan, ZHANG Xu, XIAO Qi-ming, ZHOU Qing-ming. Progress in the Resistance Mechanisms of Pathogenic Microorganism against Antimicrobial Peptide[J]. China Biotechnology, 2012, 32(05): 97-106.
[10] ZHU Dao-chen, LIU Xing-rong. Compatible Solutes Ectoine and Its Derivate Hydroxyectoine[J]. China Biotechnology, 2011, 31(02): 95-101.
[11] JIN Hui, LUAN Yu-shi. Progress on Transcription Factor in Gene Engineering of Diseases Resistances in Plants[J]. China Biotechnology, 2010, 30(10): 94-99.
[12] . Progress on transcription factor in Gene Engineering of Diseases Resistances in Plants[J]. China Biotechnology, 2010, 30(10): 0-0.
[13] . Construction of antimicrobial peptide Bactenecin 7 plasmid and its secretary[J]. China Biotechnology, 2009, 29(01): 70-74.
[14] lianjie wang. Research advances in cationic antimicrobial peptides[J]. China Biotechnology, 2008, 28(6): 100-107.
[15] SHI Chun-Lin . Multiple Roles of Antimicrobial Peptides in Host Denfence[J]. China Biotechnology, 2008, 28(4): 82-86.