Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (2): 96-100    DOI: 10.13523/j.cb.20160214
    
Advances in Research on Molecular Design of Cecropin-like Peptides
WU Chun-xu1,2, LU Xue-mei1,2, JIN Xiao-bao1,2, ZHU Jia-yong1,2
1. Institution of Pharmaceutical Bioactive Substances, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China;
2. Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou 510006, China
Download: HTML   PDF(394KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cecropins, a series of linear 31~39-residue cationic α-helical antimicrobial peptides, display extensive bioactivities against bacteria, fungus, virus and neoplastic cells. The mechanism of cecropins which is different from traditional antibiotics gives them the advantage that they tend to be not easily develop drug resistance, which indicate that cecropins may be potential potent novel antimicrobial agents to resolve multi-drug resistence problems. However, several problems of cecropins concerning antimicrobial activity, selectivity, toxicity, and stability remain to be solved. Moreover, natural cecropins are not suitable for mass production due to their complicated extraction process and huge costs as well as high toxicity to prokaryote limit the use of engineering bacteria. Molecular design methods to solve these problems are reviewed.



Key wordsAntibacterial activity      Cecropin      Antimicrobial peptides      Molecular design     
Received: 29 September 2015      Published: 19 November 2015
ZTFLH:  TQ465.6  
Cite this article:

WU Chun-xu, LU Xue-mei, JIN Xiao-bao, ZHU Jia-yong. Advances in Research on Molecular Design of Cecropin-like Peptides. China Biotechnology, 2016, 36(2): 96-100.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160214     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I2/96

[1] Boman H G,Nilsson I,Rasmuson B. Inducible antibacterial defence system in drosophila. Nature,1972,237(5352):232-235.
[2] Kim J K,Lee E,Shin S,et al. Structure and function of papiliocin with antimicrobial and anti-inflammatory activities isolated from the swallowtail butterfly,Papilio xuthus. J Biol Chem,2011,286(48):41296-41311.
[3] Bhargava K,Feix J B. Membrane binding,structure,and localization of cecropin-mellitin hybrid peptides:A site-directed spin-labeling study. Biophysical Journal,2004,86(1):329-336.
[4] Lee E,Jeong K W,Lee J,et al. Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane. BMB Reports,2013,46(5):282-287.
[5] Chen Y,Guarnieri M T,Vasil A I,et al. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother,2007,51(4):1398-1406.
[6] Park Y,Lee D G,Jang S H,et al. A Leu-Lys-rich antimicrobial peptide:activity and mechanism. Biochimica et Biophysica Acta,2003,1645(2):172-182.
[7] Sato H,Feix J B. Lysine-enriched cecropin-mellitin antimicrobial peptides with enhanced selectivity. Antimicrob Agents Chemother,2008,52(12):4463-4465.
[8] Chen H M,Wang W,Smith D,et al. Effects of the anti-bacterial peptide cecropin B and its analogs,cecropins B-1 and B-2,on liposomes,bacteria,and cancer cells. Biochimica et Biophysica Acta,1997,1336(2):171-179.
[9] Srisailam S,Kumar T K,Arunkumar A I,et al. Crumpled structure of the custom hydrophobic lytic peptide cecropin B3. European Journal of Biochemistry,2001,268(15):4278-4284.
[10] Wu J M,Jan P S,Yu H C,et al. Structure and function of a custom anticancer peptide,CB1a. Peptides,2009,30(5):839-848.
[11] Sung H H,Jane W N,Kao W Y,et al. Lipopolysaccharide-binding motif derived peptides induce cell membrane damages in human lung cancer and hepatoma cell lines. International Journal of Peptide Research & Therapeutics,2015,21(3):313-324.
[12] Boman H G. Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. Febs Letters,1989,259(1):103-106.
[13] Tian Z G,Dong T T,Teng D,et al. Design and characterization of novel hybrid peptides from LFB15(W4,10),HP(2-20),and cecropin A based on structure parameters by computer-aided method. Appl Microbiol Biotechnol,2009,82(6):1097-1103.
[14] Fox M A,Thwaite J E,Ulaeto D O,et al. Design and characterization of novel hybrid antimicrobial peptides based on cecropin A,LL-37 and magainin Ⅱ. Peptides,2012,33(2):197-205.
[15] Mathur P. Alpha,beta-dehydrophenylalanine containing cecropin-melittin hybrid peptides:conformation and activity. Journal of Peptide Science,2007,13(13):253-262.
[16] Morris C J,Beck K,Fox M A,et al. Pegylation of antimicrobial peptides maintains the active peptide conformation,model membrane interactions,and antimicrobial activity while improving lung tissue biocompatibility following airway delivery. Antimicrob Agents Chemother,2012,56(6):3298-3308.
[17] Díaz M D,De La Torre B G,Fernández-Reyes M,et al. Structural framework for the modulation of the activity of the hybrid antibiotic peptide Cecropin A-Melittin by Nε-Lysine trimethylation. ChemBioChem,2011,12(14):2177-2183.
[18] Shin S Y,Kang J H,Lee D G,et al. Influences of hinge region of a synthetic antimicrobial peptide,Cecropin A(1-13)-Melittin(1-13) hybrid on antibiotic activity. Bull Korean Chem Soc,1999,20(9):1078-1084.
[19] Schlamadinger D E,Wang Y,Mccammon J A,et al. Spectroscopic and computational study of melittin,cecropin A,and the hybrid peptide CM15. Journal of Physical Chemistry B,2012,116(35):10600-10608.
[20] Andreu D,Ubach J,Boman A,et al. Shortened cecropin A-melittin hybrids significant size reduction retains potent antibiotic activity. Febs Letters,1992,296(2):190-194.
[21] Maccari G,Di Luca M,Nifosi R,et al. Antimicrobial peptides design by evolutionary multiobjective optimization. PLoS Comput Biol,2013,9(9):e1003212.
[22] Ji S,Li W,Zhang L,et al. Cecropin A-melittin mutant with improved proteolytic stability and enhanced antimicrobial activity against bacteria and fungi associated with gastroenteritis in vitro. Biochemical & Biophysical Research Communications,2014,451(4):650-655.
[23] Zhang J,Li J,Movahedi A,et al. A novel inclusion complex(β-CD/ABP-dHC-cecropin A) with antibiotic propertiess for use as an anti-agrobacterium additive in transgenic poplar rooting medium. Enzyme & Microbial Technology,2015,81:72-79.
[24] 王晓波. 融合有酸性片段的天蚕素A-蜂毒素串联重复基因的构建和表达. 广州:暨南大学,2003. Wang X B. Construction and expression of tandem multi-copy gene edcoding CA(1-8)ME(1-10) hybrid fused acidic peptide. Guangzhou:Jinan University,2003.
[25] Zhang J,Movahedi A,Xu J,et al. In vitro production and antifungal activity of peptide ABP-dHC-cecropin A. Journal of Biotechnology,2015,199:147-154.
[26] 王炜,郑学礼,陈晓光. 应用伴侣分子在大肠杆菌表达系统高效表达家蝇天蚕素. 热带医学杂志,2009,9(2):128-131. Wang W,Zheng X L,Chen X G. High-level expression of Musca domestica cecropin with molecular partner in Escherichia coli. Journal of Tropical Medicine,2009,9(2):128-131.
[27] 王会岩,尹海燕,尹翌秋,等. 抗菌肽CM与血管内皮生长因子VEGF121在大肠杆菌中表达及鉴定. 吉林大学学报(医学版),2010,36(2):285-290. Wang H Y,Yin H Y,Yin Y Q,et al. Expression and identification of fusion protein of cecropin A-melittin and VEGF121 in E.coli. Journal of Jilin University(Medicine Edition),2010,36(2):285-290.
[28] 万一,沈卫荣,韩丽萍,等. 天蚕素B和表皮生长因子融合蛋白的原核表达、纯化与发酵. 中国生物制品学杂志,2009,22(11):1075-1079. Wan Y,Shen W R,Han L P,et al. Prokaryotic expression,purification and fermentation of cecropin B and epidermal growth factor fusion protein. Chin J Biologicals,2009,22(11):1075-1079.
[29] 卢雪梅,黄演婷,汪洁,等. 新型融合多肽HTPP-MDC体外抑制HBV复制活性及亚细胞定位. 中国病理生理杂志,2013,29(7):1283-1287. Lu X M,Huang Y T,Wang J,et al. HTPP-MDC inhibits replication and subcellular localization of hepatitis B virus in HepG2.2.15 cells. Chinese Journal of Pathophysiology,2013,29(7):1283-1287.

[1] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[2] TANG Xin,MAO Xin-fang,MA Bin-yun,GOU Ping. Antimicrobial Peptides: Current Status and Future Challenges[J]. China Biotechnology, 2019, 39(8): 86-94.
[3] Jia-ao GE,Chang LIU,Jian-gang GONG,Yan-qin LIU. Research Progress of Antibacterial Cyclopeptides[J]. China Biotechnology, 2018, 38(11): 76-83.
[4] LIU Xiao-ming, JIANG Ning, ZHANG Ai-zhong, CAI Peng. Expression of Hybrid Antimicrobial Peptides in Pichia Yeast and Identification of Its Biological Activity[J]. China Biotechnology, 2016, 36(2): 81-89.
[5] CHEN Jie-mei, ZHANG Can-hui, AI Tian. Study of the Antibacterial Peptides Produced by Bacillus amyloliquefaciens KN-BL-1 and Its Fermented Soybean Meal[J]. China Biotechnology, 2014, 34(10): 61-66.
[6] WU Ru-juan, ZHANG Ri-jun. The Progress of Hybrid Peptides on Design and Biological Activity[J]. China Biotechnology, 2013, 33(9): 94-100.
[7] LI Jian-bo, JIANG Ming-feng, WANG Yong. Tibetan Sheep Mammary Gland Lysozyme: Molecular Cloning, Prokaryotic Expression and Its Antibacterial Activity[J]. China Biotechnology, 2013, 33(8): 38-44.
[8] CHEN Yu-ting, WANG Chang-hai, YAN Xiu-wen, LI Jun-sheng. Antimicrobial Peptides:Design and Application[J]. China Biotechnology, 2013, 33(7): 97-102.
[9] MING Fei-ping, YANG Jun, ZHU Jin-mei, KUANG Zhe-shi, LI Hua-zhou, XIA Feng-geng, YE Ming-qiang, WANG Hou-guang, ZHAO Xiang-jie, HUANG Zhi-feng, MA Miao-peng, SHI Ju-qing, CAI Hai-ming, ZHANG Ling-hua. Modification of 5’UTR Sequences of pPIC9K Increases Expression of Antimicrobial Peptide PR39[J]. China Biotechnology, 2013, 33(12): 86-91.
[10] ZHOU Guang-qi, MA Peng-bo, LIU Qiao, QUAN Chun-shan, FAN Sheng-di. Optimization of Culture Medium and Prediction of Antibacterial Activity by Bacillus Amyloliquefaciens Q-426 Fermentation[J]. China Biotechnology, 2013, 33(11): 21-26.
[11] XIONG Wen, YANG Xue-min, WANG Jian-hua, QUAN Chun-shan, FAN Sheng-di. Effects of DKPs on Gene Expression of the Antibacterial Substances in Bacillus amyloliquefaciens Q-426[J]. China Biotechnology, 2012, 32(03): 47-52.
[12] SHU Mei, XU Yang, XU Xi, TU Zhui. Expression and Activity Analysis of Two Anti-microbial Peptides from Aquatic Animals[J]. China Biotechnology, 2011, 31(02): 56-61.
[13] XIE Mei-Xia, CUI Dong-Qing, LI Hao, WANG Jing-Cheng, LIU Jun-Mei, ZHANG Zhi-Yi, AN Xin-Min. Molecular Designing of amiRNA and Its synthesis Strategy in vitro[J]. China Biotechnology, 2010, 30(09): 92-97.
[14] . Construction of antimicrobial peptide Bactenecin 7 plasmid and its secretary[J]. China Biotechnology, 2009, 29(01): 70-74.
[15] lianjie wang. Research advances in cationic antimicrobial peptides[J]. China Biotechnology, 2008, 28(6): 100-107.