Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (04): 92-97    DOI:
    
Optimization of Fermentation Medium of Sucrose Isomerase by Recombinant Escherichia coli through Response Surface Method
WANG Chen, LI Sha, XU Hong, WEI Yan, CAI Heng
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing University of Technology,Nanjing 210009,China
Download: HTML   PDF(1087KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The effects of different concentrations of carbon and nitrogen sources on recombinant E. coli BL21(DE3) on the fermentation of sucrose isomerase were investigated,the culture media of recombinant E.coli producing sucrose isomerase was optimized using Design Expert 7.1.6 software combined with the Plackett-Burman design and central composite design method.The results showed that the optimal media for culture as follows:Cane molasses 10.65 g/L ,Corn steep 22.22 g/L, NaCl 7.57g/L ,MgSO4·7H2O 0.52g/L, KH2PO4 4.46g/L.It is found that the Sucrose isomerase activity was 29.1U/ml, compared to LB medium culture E.coli(15U/ml), sucrose isomerase activity increased by 94%, with the original strain increased 21.4 times(1.3U/ml) compared.



Key wordsSucrose isomerase      Response surface      E.coli      Cane molasses      Lactose induction     
Received: 03 November 2010      Published: 26 April 2011
ZTFLH:  Q819  
Cite this article:

WANG Chen, LI Sha, XU Hong, WEI Yan, CAI Heng. Optimization of Fermentation Medium of Sucrose Isomerase by Recombinant Escherichia coli through Response Surface Method. China Biotechnology, 2011, 31(04): 92-97.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I04/92


[1] Low N H, Sporns P. Analysis and quantitation of minor di-and trisaccharides in honey using capillary gas chromatography . Journal of Food Science, 1988, 53(2): 558-561.

[2] Maki Y, Ohta K, Takazoe I, et al. Acids production from isomaltulose, sorbitol, and xylitol in suspensions of human dental plaque . Caries Research. 1983, 17(4): 335-339.

[3] Goda T, Hosoya N. Hydrolysis of palatinose by rat intestinal sucrase-isomaltase complex . Nutrition and Food Science, 1983, 36(4): 169-173.

[4] Yamada K, Shiinhara H, Hosoya N. Hydrolysis of 1-O-α-D-glucopyranosyl-D-fructofuranose by rat intestinal sucrase-isomerase complex . Nature Rep Int, 1985, 32(4): 1211-1222.

[5] Cheetham P S J, Imbe C E, Isherwood J. The formation of isomaltulose by immobilized Erwinia rhapontici. Nature, 1982, 299(5884): 628-631.

[6] MacAllister M, Kelly C T, Doyle E, et al. The isomaltulose synthesizing enzyme of Serratia plymuthica. Biotechnology Letters, 1990, 12(9): 667-672.

[7] Lund B M, Waytt G M. The nature of reducing compounds formed from sucrose by Erwinia carotovora var. atroseptica. Journal of General Microbiology, 1973, 78(3): 331-336.

[8] Veronese T, Perlot P. Mechanism of sucrose conversion by the sucrose isomerase of Serratia plymuthica ATCC 15928 . Enzyme and Microbial Technology, 1999, 24(5): 263-269.

[9] Huang J H, Hsu L H, Su Y C. Conversion of sucrose to isomaltulose by Klebsiella planticola CCRC 19112 . Journal of Industrial Microbiology and Biotechnology, 1998, 21(1): 22-27.

[10] McAlliste M, Kelly C T, Doyle E. The isomaltulose synthesizing enzyme of Serratia plymuthica. Biotechnology Letters, 1990, 12(9): 667-672.

[11] Cho M H, Park S E, Lim J K, et al. Conversion fo sucrose into isomaltulose by Enterobacter sp.FMB1, an isomaltulose-producing microorganism isolated from traditional Korean food . Biotechnology Letters, 2007, 29(5): 453-458.

[12] 林璐,李莎,朱宏阳,等. 固定化细胞生物催化合成异麦芽酮糖. 食品与发酵工业, 2008,34(3):29-32. Lin L, Li S, Zhu H Y et al. Food and Fermentation Industries, 2008,34(3):29-32.

[13] Sha Li, Heng Cai, Yujia Qing, et al. Cloning and characterization of a sucrose isomerase from Erwinia rhapontici NX-5 for isomaltulose hyperproduction . Appl Biochem Biotechnol. DOI 10. 1007/s12010-010-901.

[1] Li ZHANG,Juan DING,Yu-cheng HAO,Cheng YE,Yang PU. Identification of a Marine Microalgae and Optimization of Protoplast Preparation[J]. China Biotechnology, 2018, 38(11): 42-50.
[2] ZHANG Yu-meng, TONG Mei, LU Xiao-dong, MI Yue, MO Ting, LIU Jin-yi, YAO Wen-bing. Expression of Soluble Anti-TNF-α Fab in E.coli: Optimization for Technological Process[J]. China Biotechnology, 2016, 36(9): 31-37.
[3] ZHANG Yu-meng, TONG Mei, LU Xiao-dong, MI Yue, XU Chen, YAO Wen-bing. Advances in Promoting Soluble Expression of Recombinant Protein in Escherichia coli[J]. China Biotechnology, 2016, 36(5): 118-124.
[4] ZHANG Xu-ning, QUAN Chun-shan, LIAO Ying-ling, LIU Ke-huan, XIONG Wen, FAN Sheng-di. Expression,Purification and Identification of AgrA, a Response Regulator Protein of Two-component Signal Transduction System in Staphylococcus aureus[J]. China Biotechnology, 2015, 35(5): 32-40.
[5] LI Liang, WANG Ze-jian, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. Mutagenesis Breeding and Optimization of Cephalosporin C by Cephalosporium acremonium[J]. China Biotechnology, 2014, 34(8): 61-66.
[6] HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens[J]. China Biotechnology, 2014, 34(5): 66-74.
[7] JIA Meng-jiao, LIU Rui, LU Jie-lin, ZHU Yun-han, WANG Ling-chong, WANG Xin-zhi, WU Hao, LU Ming-ming. Study on Preparation of ACE Inhibitory Enzymatic Peptides of Cyanea[J]. China Biotechnology, 2014, 34(3): 103-108.
[8] GAO Xue-li, WU Jian-ping, XU Gang, YANG Li-rong. Isolation, Identification of Trichoderma ghanense and Optimization of Spores Production[J]. China Biotechnology, 2014, 34(2): 84-92.
[9] ZHENG Li-juan, CHEN Shao-yun, XU Gang, WU Jian-ping, YANG Li-rong. Engineering E.coli for Isobutanol Production by Two-promoter Vectors[J]. China Biotechnology, 2013, 33(8): 67-74.
[10] LUO Feng, DUAN Xu-guo, SU Ling-qia, WU Jing. Cloning,Expression and Fermentation Optimization of Thermobifida fusca Trehalose Synthase Gene in E.coli[J]. China Biotechnology, 2013, 33(8): 98-104.
[11] ZHANG Qi, NING Xi-bin, ZHANG Ji-lun. Optimization of Cultivation Conditions for Protease Production from Marine Bacteria by Response Surface Methodology[J]. China Biotechnology, 2013, 33(8): 105-110.
[12] WANG Dan, ZHENG Hong-li, JI Xiao-jun, GAO Zhen. Optimization the Accumulation of Astaxanthin in Chlorella Zofingiensis Using Response Surface Methodology[J]. China Biotechnology, 2013, 33(7): 71-81.
[13] ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu. Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis[J]. China Biotechnology, 2013, 33(6): 79-85.
[14] WU Ying-chun, MA Qin-qin, DING Xian-feng, ZHANG Kai, LIU Li-li, GUO Jiang-feng. Expression of XRN1 Protein and Optimization of Fermentation Medium with Response Surface Method[J]. China Biotechnology, 2013, 33(4): 121-128.
[15] SUN Guo-xia, WANG Jun, DING Wei-tong, WANG Kai-xuan, WU Fu-an. Process Optimization of Selectively Enzymatic Synthesis of Isoquercitrin Using Ionic Liquid[J]. China Biotechnology, 2013, 33(3): 130-134.