Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (8): 61-66    DOI: 10.13523/j.cb.20140810
    
Mutagenesis Breeding and Optimization of Cephalosporin C by Cephalosporium acremonium
LI Liang, WANG Ze-jian, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang
State Key Lab of Bioreactor Engineering, National Engineering Research Center for Biotechnology, East China University of Science and Technology, Shanghai 200237, China
Download: HTML   PDF(773KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The Cephalosporin C fermentation was improved through mutations and optimization of the seed medium. High-producing strains Cephalosporium acremonium FC-1-4 and FC-4-2 were obtained with 60Co irradiation and Uv+LiCl treatment, the production were 26% and 54.5% higher than that of control. Meanwhile, the optimal seed medium component were 2.62% glucose, 3.70% corn steep liquor, 0.15% MgSO4 via Plackett-Burman and central composite design(CCD). The 34.7% and 13.2% increase of Cephalosporin C production was achieved with the Cephalosporium acremonium FC-1-4 and FC-4-2 respectively. The obtained high-producing strains and optimal seed medium have crucial industrial utilization in the future.



Key wordsCephalosporin C      Mutagenesis breeding      Response surface methodology      Fermentation     
Received: 25 April 2014      Published: 25 August 2014
ZTFLH:  Q345  
Cite this article:

LI Liang, WANG Ze-jian, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. Mutagenesis Breeding and Optimization of Cephalosporin C by Cephalosporium acremonium. China Biotechnology, 2014, 34(8): 61-66.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140810     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I8/61


[1] 祖玉梅. β-内酰胺类抗生素的应用与发展现状. 中国实用医药, 2010, 05(30): 246-248. Zu Y M. β-lactam antibiotics application and development. Practical Medicine in China, 2010, 05(30): 246-248.

[2] 薛雨, 陈宇瑛. 头孢菌素类抗生素的最新研究进展. 中国抗生素杂志, 2011, 36(2): 86-92. Xue Y, Chen Y Y.New development of cephalosporin antibiotics. Chinese Journal of Antibiotics, 2011, 36(2): 86-92.

[3] 郑琦. 头孢菌素类产品的市场情况及头孢菌素C发酵工艺. 海峡药学, 2010, 22(7): 38-40. Zheng Q. Cephalosporin products market situation and cephalosporin C fermentation technology. Strait Pharmaceutical Journal, 2010, 22(7): 38-40.

[4] Skatrud P L, Tietz A J, Ingolia T D, et al. Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Nat Biotech, 1989, 7(5):477-485.

[5] Gutierrez S, Velasco J, Marcos A T, et al. Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Appl Microbiol Biotechnol, 1997. 48(5):606-614.

[6] Ullán R, Liu G, Casqueiro J, et al. The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genomics, 2002, 267(5):673-683.

[7] DeModena J A, Gutierrez S, Velasco J, et al. The production of cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. Biotechnology, 1993, 11(8):926-929.

[8] 胡又佳, 朱宝泉. 顶头孢霉遗传育种研究进展. 遗传, 2011, 33(10): 1079-1086. Hu Y J, Zhu B Q. Research progress on strain improvement of Acremonium chrysogenum by genetic engineering. Hereditas, 2011, 33(10): 1079-1086.

[9] 孟国庆, 赵林, 戴秀君, 等. 头孢菌素C高产菌株的推理选育. 中国抗生素杂志, 2011, 36(12):889-894, 951. Meng G Q, Zhao L, Dai X J, et al. Rational screening of eephalosporin C high yielding producing strains. Chinese Journal of Antibiotics, 2011, 36(12): 889-894, 951.

[10] 曹栋, 陈一鸣, 徐威. 紫外诱变和终产物抗性筛选头孢菌素C高产菌株. 沈阳药科大学学报, 2010, 27(06):495-498. Cao D, Chen Y M, Xu W.Breeding of high cephalosporin C2-producing strain by UV radiation and resistance of end metabolite. Journal of Shenyang Pharmaceutical University, 2010, 27(06):495-498.

[11] 唐敦武, 何建勇. 顶头孢霉的去代谢产物反馈调节选育模型的建立与应用. 沈阳药科大学学报, 2005, 22(4): 306-309. Tang D W, He J Y.Screening model setting of defeedback regulation of metabolite in Cephalosporium acremomium. Journal of Shenyang Pharmaceutical University, 2005, 22(4): 306-309.

[12] Tollnick C, Seidel G, Beyer M, et al. Investigations of the production of cephalosporin C by Acremonium chrysogenum. Adv Biochem Eng Biotechnol, 2004, 86: 1-45.

[1] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[2] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[3] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[4] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[5] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[6] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[7] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[8] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[9] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[10] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[11] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[12] Ya-chao FAN,Lin ZHANG,Xiao-shu LI,Peng-xiang WANG,Xin-wu YAO,Kai QIAO. Study on the Fermentation of 2,3-Butanediol by Klebsiella pneumoniae CICC10011[J]. China Biotechnology, 2018, 38(2): 68-74.
[13] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[14] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[15] LIU Cui-cui, HU Meng-die, WANG Zhi, DAI Jun, YAO Juan, LI Pei, LI Zhi-jun, CHEN Xiong, LI Xin. Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii[J]. China Biotechnology, 2017, 37(9): 41-47.