Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (5): 118-124    DOI: 10.13523/j.cb.20160517
    
Advances in Promoting Soluble Expression of Recombinant Protein in Escherichia coli
ZHANG Yu-meng1, TONG Mei2, LU Xiao-dong2, MI Yue1, XU Chen2, YAO Wen-bing1
1. Institute of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China;
2. Beijing Tri-Prime Genetic Engineering Co., Ltd, Engineering Research Center of Beijing of Pegylated Interferon, Beijing 102600, China
Download: HTML   PDF(481KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Recombinant protein expression in Escherichia coli (E. coli) is sound and effective with the protein expression taking up to 50 percent of the total protein. The soluble recombinant proteins usually have biochemical activities, these proteins include antibodies and enzymes. Here are many soluble recombinant proteins have been approved as drugs, so it is crucial to research how to promote soluble expression of recombinant proteins in E. coli. Here the researches about improving yield of soluble expression of recombinant protein by E. coli have been summarized thoroughly. Variables at stages of a protein expression such as promoter system, SD sequence, signal peptide, host strains, co-expression of other proteins and high cell density cultivation to optimize soluble expression in E.coli are discussed.



Key wordsSoluble expression      Molecular chaperons      E.coli      High cell density cultivation      Nuclease     
Received: 12 November 2015      Published: 22 December 2015
ZTFLH:  Q591.2  
Cite this article:

ZHANG Yu-meng, TONG Mei, LU Xiao-dong, MI Yue, XU Chen, YAO Wen-bing. Advances in Promoting Soluble Expression of Recombinant Protein in Escherichia coli. China Biotechnology, 2016, 36(5): 118-124.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160517     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I5/118

[1] Walsh G. Biopharmaceutical benchmarks. Nature Biotechnol, 2006, 24(7): 769-765.
[2] Datar R V, Cartwright T, Rosen C C. Process economics of animal cell and bacterial fermentations: a case study analysis of tissue plasminogen activator. Bio/Technology, 1993, 11(3):349-357.
[3] Gold L. Expression of heterologous proteins in Escherichia coli. Methods Enzymol, 1990, 185: 11-14.
[4] Hodgson J. Emphasis has shifted from the vector construct to the host organism. Bio/Technology, 1993, 11(3):887-893.
[5] Shatzman A R. Expression systems. Curr Opin Biotechnol, 1995, 6: 491-493.
[6] Olins P O, Lee S C. Recent advances in heterologous gene expression in Escherichia coli. Curr Opin Biotechnol, 1993, 4(5):520-525.
[7] Ritz D, Beckwith J. Roles of thiolredox pathways in bacteria. Annu Rev Microbiol, 2001, 55: 21-48.
[8] Yin J C, Li G X, Ren X, et al. Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. Biotechnol, 2007, 127(3): 335-347.
[9] Leichert L I, Jakob U. Protein thiolmodifications visualized in vivo. PLoS Biol, 2004, 2(11): e333.
[10] Das A. Overproduction of proteins in Escherichia coli: vector, host and strategies. Methods Enzymol, 1990, 182: 93-112.
[11] Yeo Y J, Shin S, Lee S G,et al. Production, purification, and characterization of soluble NADH-flavin Oxidoreductase (StyB) from Pseudomonas putida SN1. Microbiol Biotechnol, 2009, 19(4):362-367.
[12] Yu H, Ma Q, Lin J, et al. Expression and purification of GST-FHL2 fusion protein. Genet Mol Res, 2013, 12(4): 6372-6378.
[13] Goulding C W, Perry L J. Protein production in Escherichia coli for structural studies by X-ray crystallography. Struct Biol, 2003, 142(1):133-143.
[14] Qing G, Ma L C, Khorchid A, et al. Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol, 2004, 22(7): 877-882.
[15] Chen H Y, Bjerknes R, Kumar R, et al. Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acid Res, 1994, 22(23):4953-4957.
[16] Corisdeo S, Wang B. Functional expression and display of an antibody Fab fragment in Escherichia coli: study of vector designs and culture conditions. Protein Expression and Purification, 2004, 34(2): 270-279.
[17] Savva C. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiological Reviews, 1996, 60(3):512-538.
[18] Humphreys D P, Carrington B, Bowering L C, et al. A plasmid system for optimization of Fab production in Escherichia coli: importance of balance of heavy chain and light chain synthesis. Protein Expression and Purification, 2002, 26(2): 309-320.
[19] Nagano R, Masuda K. Establishment of a signal peptide with cross-species compatibility for functional antibody expression in both Escherichia coli and Chinese hamster ovary cells. Biochemical and Biophysical Research Communications, 2014, 447(4): 655-659.
[20] Carpousis A J. The RNA degradosome of Escherichia coli: AnmRNA-degrading machine assembled on RNase E. Annu Rev Microbiol, 2007, 61: 71-87.
[21] Ali M, Suzuki H, Fukuba T, et al. Improvements in the Cell-Free Production of Functional Antibodies sing Cell Extract from Protease-Deficient Escherichia coli Mutant. J Biosci Bioeng, 2005, 99(2): 181-186.
[22] Cruz-Vera L R, Magos-Castro M A, Zamora-Romo E, et al. Ribosome stalling and peptidyl-tRNA drop-off during translational delay at AGA codons. Nucleic Acids Res, 2004, 32(15): 4462-4468.
[23] Mira D, Drazen R, Gordana S, et al. Successful production of recombinant buckwheat cysteine-rich aspartic protease in Escherichia coli. Serb Chem Soc, 2009, 74(6): 607-618.
[24] Bessette P H, Aslund F, Beckwith J, et al. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A., 1999, 96(24): 13703-13708.
[25] Chen Y, Song J, Sui S F, et al. DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Protein Expr Purif, 2003, 32(2): 221-231.
[26] Nesbeth D N, Perez-Pardo M A, Ali S, et al. Growth and Productivity Impacts of Periplasmic Nuclease Expression in an Escherichia coli Fab' Fragment Production Strain. Biotechnol Bioeng, 2012, 109(2): 517-527.
[27] Ostermeier M, De Sutter K, Georgiou G, et al. Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutant and increase the yield of a heterologous secreted protein with disulfide bonds. Boil Chem, 1996, 271: 10616-10622.
[28] Humphreys D P, Weir N, Lawson A, et al. Co-expression of human protein disulphide isomerase (PDI) can increase the yield of an antibody Fab' fragment expressed in Escherichia coli. Federation of European Biochemical Societies, 1996, 380(2):194-197.
[29] Reilly D E, Yansura D G. Production of monoclonal antibodies in E.coli. Springer:AAPS, New York, 2010, 295-308.
[30] Hartl F U, Hayer-Hartl M. Protein folding-Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 2002, 295(5561): 1852-1858.
[31] Sahu S K, Rajasekharan A, Gummadi S N, et al. GroES and GroEL are essential chaperones for refolding of recombinant human phospholipid scramblase 1 in E. coli. Biotechnol Lett, 2009, 31(11): 1745-1752.
[32] Park S L, Kwon M J, Kim S K, et al. GroEL/ES chaperone and low culture temperature synergistically enhanced the soluble expression of CGTase in E. coli. Microbiol Biotechnol, 2004, 14(1): 216-219.
[33] Huang K, Ghose R, Flanagan J M, et al. Backbone dynamics of the N-terminal domain in E. coli DnaJ determined by 15N- and 13CO-relaxation measurements. Biol Chem, 1999, 38(32): 10567-10577.
[34] Levy R, Ahluwalia K, Bohmann D J, et al. Enhancement of antibody fragment secretion into the Escherichia coli periplasm by co-expression with the peptidyl prolyl isomerase, FkpA, in the cytoplasm. Journal of Immunological Methods, 2013, 394(2): 10-21.
[35] Subedi G P, Satoh T, Hanashima S, et al. Overproduction of anti-Tn antibody MLS128 single-chain Fv fragment in Escherichia coli cytoplasm using a novel pCold-PDI vector. Protein Expression and Purification, 2012, 82(1): 197-204.
[36] Velmurugan N, Kim H S, Jeong K J, et al. Enhanced production of human FccRIIa receptor by high cell density cultivation of Escherichia coli. Protein Expression and Purification, 2011, 79(1): 60-65.
[37] Kotik M, Kocanová M, Maresová H, et al. High-level expression of a fungal pyranose oxidase in high cell-density fed-batch cultivations of Escherichia coli using lactose as inducer. Protein Expression and Purification, 2004, 36(1): 61-69.
[38] Zou C, Duan X, Wu J. Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy. Bioresource Technology, 2014, 172: 174-179.
[39] Zhang H C, Yang J, Yang G W, et al. Production of recombinant protein G through high-density fermentation of engineered bacteria as well as purification. Mol Med Rep, 2015, 12(2): 3132-3138.
[40] Yang J, Pan X, Wang H, et al. A study of high cell density cultivation process of recombinant Helicobacter pylori multi-epitope vaccine engineering bacteria. Int J Clin Exp Med, 2015, 8(1): 173-180.
[41] Faust G, Janzen N H, Bendig C, et al. Feeding strategies enhance high cell density cultivation and protein expression in milliliter scale bioreactors. Biotechnology, 2014,9(10): 1293-1303.
[42] Volontè F, Marinelli F, Gastaldo L, et al. Optimization of glutaryl-7-aminocephalosporanic acid acylase expression in E.coli. Protein Expr Purif, 2008, 61(2): 131-137.
[43] Piserchio A, Ghose R, Cowburn D. Optimized bacterial expression and purification of the c-Src catalytic domain for solution NMR studies. J Biomol NMR, 2009, 44(2): 87-93.
[44] Turner P, Holst O, Karlsson E N. Optimized expression of soluble cyclomaltodextrinase of thermophilic origin in Escherichia coli by using a soluble fusion-tag and by tuning of inducer concentration. Protein Expr Purif, 2005, 39(1): 54-60.

[1] Da-wei FU,Ying-ying SUN,wei XU. Efficient Heterologous Expression, Purification and Activity Analysis of Fusion Protein NusA-hRI[J]. China Biotechnology, 2019, 39(3): 21-28.
[2] Min-hua XU,Jing-jing ZHANG,Xiao-bao JIN,Xia-bo LI,Yan WANG,Yan MA. Cloning\Expression and Bioactivity of the Chitinase Gene ChiA from the Endophytes of Periplaneta americana[J]. China Biotechnology, 2019, 39(1): 31-37.
[3] ZHANG He-ming, CAI Chu-fan, LIU Yang, GAN Long-zhan, JIAO Xue-miao, TIAN Yong-qiang. Soluble Expression of Human Leukemia Inhibitory Factor in Prokaryotic Cells and Its Purification[J]. China Biotechnology, 2017, 37(9): 7-14.
[4] WANG Pei, CHEN Kai, GAO Song. Production of Restriction Endonuclease Not I Utilizing CpG DNA Methylase M.Sss I Co-expression Vector[J]. China Biotechnology, 2017, 37(8): 51-58.
[5] JI Jun, ZHU Chen-chen, XU Xin, LIU Xiau, LENG Chao-liang, SHI Hong-fei, YAO Lun-guang, KAN Yun-chao. Soluble Fusion-expression and Antitumor Activity Analysis of Apoptin of Chicken Anemia Virus[J]. China Biotechnology, 2017, 37(2): 26-32.
[6] XU Yi-fan, LIU Ming-qiu. Expression and Purification Procedure of Nonspecific Endonuclease Sma and Its Performance Study[J]. China Biotechnology, 2017, 37(11): 89-93.
[7] ZHANG Yu-meng, TONG Mei, LU Xiao-dong, MI Yue, MO Ting, LIU Jin-yi, YAO Wen-bing. Expression of Soluble Anti-TNF-α Fab in E.coli: Optimization for Technological Process[J]. China Biotechnology, 2016, 36(9): 31-37.
[8] LIU Pan-rao, ZHOU Xue-chen, ZHU Xue-jiao, BAI Juan, WANG Xian-wei, JIANG Ping. The Soluble Expression of Porcine Circovirus Type 2 Cap Gene in Escherichia coli and Its Immunogenicity in Mice[J]. China Biotechnology, 2016, 36(4): 50-56.
[9] LU Qing-shan, QIAO Yuan-yuan, LI Jin-feng, WANG Yun-liang, WANG Shan-shan, SHI Cheng-he, YANG Xiao-peng, ZHANG Da-jin. Soluble Expression of Human HPPCn Recombinant Protein and Detection of Its Proliferation Activity[J]. China Biotechnology, 2015, 35(12): 15-20.
[10] REN Yan-ping, LUO Chan, HUANG Zhang-hu, HUANG Shi-hai, SHI De-shun, LI Xiang-ping. An Improved Method of Chromatin Immunoprecipitation for Mammary Gland[J]. China Biotechnology, 2014, 34(9): 80-86.
[11] ZHUANG Jun, WU Zu-jian. Targeted Modification of Genomic DNA by TALEs[J]. China Biotechnology, 2014, 34(8): 74-80.
[12] YANG Fa-yu, GE Xiang-lian, GU Feng. Progress of Next-generation Targeted Gene-editing Techniques[J]. China Biotechnology, 2014, 34(2): 98-103.
[13] ZHANG Chao, GONG Wei, GUO Ying-ying, SUN Wei-guo, YAO Min, YU Ai-ping. The Prokaryotic Expression of an Anti-coagulant Protein of EH[J]. China Biotechnology, 2014, 34(12): 69-77.
[14] ZHENG Li-juan, CHEN Shao-yun, XU Gang, WU Jian-ping, YANG Li-rong. Engineering E.coli for Isobutanol Production by Two-promoter Vectors[J]. China Biotechnology, 2013, 33(8): 67-74.
[15] LUO Feng, DUAN Xu-guo, SU Ling-qia, WU Jing. Cloning,Expression and Fermentation Optimization of Thermobifida fusca Trehalose Synthase Gene in E.coli[J]. China Biotechnology, 2013, 33(8): 98-104.