Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (05): 57-62    DOI:
    
Cloning and Function Analysis of the Promoter of PpMADS1 in Peach
LI CuiXIE Hua1,2, XU Yong2,LI Yun-fu1,2,MA Rong-cai1,2
1.College of Life Science, Capital Normal University, Beijing 100048,China
2.Beijing AgroBiotechnology Research Centre,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China
Download: HTML   PDF(1372KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to analyze transcriptional regulative mechanism of PpMADS1 gene, the PpMADS1 promoter was obtained using Genome Walking method from peach (Prunus persica) genomic DNA. Sequence analysis indicated that there exist TATA-box, CAAT-box, two CArG box, one G-box, one TGA-element and a large number of regulatory elements involved in light response, such as GT-1, Sp1 and as-2-box, these results indicated that the promoter may be regulated by light and hormone. The PpMADS1 promoter was truncated according to the prediction of putative of cis-acting elements and fused with GUS reporter gene and transferred into Arabidopsis thaliana. Histochemical staining of different organs of the transgenic plants showed that the region between -197 to -454bp specified GUS expression in flower primordium and the region between -454 to -678bp in sepals and petals. A negatively regulatory element was shown to be present between -678 to -978bp that repressed GUS expression in filament.



Key wordsdevelopment      PpMADS1      Promoter      cis element      Floral     
Received: 20 January 2010      Published: 25 May 2010
Cite this article:

. Cloning and Function Analysis of the Promoter of PpMADS1 in Peach. China Biotechnology, 2010, 30(05): 57-62.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I05/57

[1] Zhang L, Xu Y, Ma R C. Molecular cloning, identification, and chromosomal localization of two MADS box genes in peach (Prunus persica). J Genet Genomics, 2008, 35(6): 365372. 
[2] Alvarez J, Guli C L, Yu X H,et al. Terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant J, 1992, 2 (1) : 103116. 
[3] Berbel A, Navarro C, Ferrándiz C, et al. Analysis of PEAM4, the pea AP1 functional homologue,supports a model for AP1like genes controlling both floral meristem and floral organ identity in different plant species. Plant J, 2001, 25(4): 441451. 
[4] Sung S K, Yu G H, An G. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiol, 1999, 120(4): 969978. 
[5] Mandel M A, Yanofsky M F. A gene triggering flower formation in Arabidopsis. Nature, 1995, 377: 522524. 
[6] 魏群.分子生物学实验指导.北京:高等教育出版社, 1999. 6970. Wei Q. Guidelines of Molecular Biology Experiment. Beijing: Higher Education Press, 1999. 6970. 
[7] O’Malley R C,Alonso J M,Kim C J,et al.An adapter ligationmediated PCR method for highthroughput mapping of TDNA inserts in the Arabidopsis genome. Nat Protoc,2007,2(11):29102917. 
[8] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16(6): 735743. 
[9] Jefferson R A, Kavanagh T A and Bevan M W. GUS fusion, βglucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987, 6(13): 39013907. 
[10] Chen L, Cheng J C, Castle L, et al. EMF genes regulate Arabidopsis inflorescence development. Plant Cell, 1997, 9(11): 20112024. 
[11] Lescot M, Dehais P, Thijs G, et al. PlantCARE, a database of plant cisacting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30 (1) : 325327. 
[12] Folter S, Angenent G C. Trans meets cis in MADS science. Trends Plant Sci, 2006, 11(5): 224231. 
[13] Huang H, Tudor M, Su T, et al. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Plant Cell, 1996, 8(1): 8194. 
[14] Tang W, Perry S E. Binding site selection for the plant MADS domain protein AGL15. J Biol Chem,2003 , 278(30): 2815428159. 
[15] Zhu C, Perry S E. Control of expression and autoregulation of AGL15, a member of the MADSbox family. Plant J, 2005 , 41(4): 583594. 
[16] Harter K, Kircher S, Frohnmeyer H. Lightregulated modification and nuclear translocation of cytosolic Gbox binding factors in parsley. Plant Cell, 1994, 6(4): 545559. 
[17] Kircher S, Wellmer F, Nick P. Nuclear import of the parsley bZIP transcription factor CPRF2 is regulated by phytochrome photoreceptors. J Cell Bio, 1999, 144(2): 201211. 
[18] Guiliano G, Pichersky E, Ma1ik V S. An evolutionary conserved protein binding sequence upstream of a plant lightregulated gene. PANS, 1988, 85(19): 70897093. 
[19] Mandel M A, Yanofsky M F. A gene triggering flower formation in Arabidopsis. Nature , 1995, 377 : 522524.

[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] ZHAO Xia,ZHU Zhe,ZU Yao. tbx2b Affects Atrioventricular Canal Development in Zebrafish[J]. China Biotechnology, 2021, 41(8): 1-7.
[3] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[4] WU Han-rong,WANG Ying,YANG Li,GE Yao,FAN Ling. Current Situation and Development Suggestions of China’s Biotechnology Base Platform[J]. China Biotechnology, 2021, 41(11): 119-123.
[5] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[6] ZHU Ya-xin, DUAN Yan-ting, GAO Yu-hao, WANG Ji-yue, ZHANG Xiao-mei, ZHANG Xiao-juan, XU Guo-qiang, SHI Jin-song, XU Zheng-hong. Synthesis and Regulation of Poly-γ-glutamic Acid with Different D/L Monomer Ratios[J]. China Biotechnology, 2021, 41(1): 1-11.
[7] MENG Xiao-lin,PANG Xi-ming,WANG Jie. Agrobacterium-mediated Transformation and the Functions of Pks in Marine-derived Penicillium oxalicum[J]. China Biotechnology, 2020, 40(9): 11-17.
[8] XUAN Mei-juan,ZHANG Xiao-yun,GAO Ying,Li-GAO Ying,WU Jia-jing,MA Mei,WANG Yan-mei,KOU Hang,LU Fu-ping,LI Ming. Characterization of Promoters in the Glycolytic Pathway and Tricarboxylic Acid Cycle of E. coli and Its Application[J]. China Biotechnology, 2020, 40(6): 20-30.
[9] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[10] ZHU Xiao-li,HUANG Cui,MA Li-li,ZHANG Chao,GONG Yue,ZHAO Wan-yu,ZHAO Xiu-fang,GUO Wen-jiao,PENG Hao,ZHANG Ji,LIANG Hui-gang. Research Advances of Novel Coronavirus Disease (COVID-19)[J]. China Biotechnology, 2020, 40(1-2): 38-50.
[11] LI Dong-qiao,LV Lu-cheng,YANG Yan-ping. The Research Status and Development Trend of Global Human Coronavirus Antibody Field[J]. China Biotechnology, 2020, 40(1-2): 65-70.
[12] JIA Zhen-wei. The Function of SIRT1 and Its Role in Regulating Follicular Development and Oocyte Maturation[J]. China Biotechnology, 2020, 40(10): 51-56.
[13] Fu-lan GAO,Jia-long QI,Cong-yan SHU,Hang-hang XIE,Wei-wei HUANG,Cun-bao LIU,Xu YANG,Wen-jia SUN,Hong-mei BAI,Yan-bing MA. Efficient Secretory Expression of Optimized Mouse Interleukin-33 Gene in Mammalian Cells[J]. China Biotechnology, 2019, 39(3): 46-55.
[14] Zhi-yong XIE,Xiang ZHOU. Machine Learning in Medical Imaging:the Applications in Drug Discovery and Precision Medicine[J]. China Biotechnology, 2019, 39(2): 90-100.
[15] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.