Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (2/3): 53-62    DOI: 10.13523/j.cb.2011050
    
Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis
ZHOU Hui-ying1,ZHOU Cui-xia1,2,ZHANG Ting1,WANG Xue-yu1,ZHANG Hui-tu1,JI Yi-zhi3,*(),LU Fu-ping1,*()
1 Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education,College of Biotechnology,Tianjin University of Science &Technology, Tianjin 300457, China
2 College of Biology and Brewing Engineering, Taishan University, Taian 271000,China
3 Beijing Key Laboratory of Biomass Waste Resource Utilization, College of Biochemical Engineering,Beijing Union University, Beijing 100023,China
Download: HTML   PDF(3283KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bacillus licheniformis 2709 is a strain of alkaline protease that has been put into industrial production due to its easy cultivation, GRAS status and perfect protein secretion ability. In order to improve the fermentation production performance of the strain, increase the utilization of culture medium components and the production of alkaline protease by the bacteria, the extracellular secretion enzyme system has been improved. With the help of homologous recombination mechanism, the xylanase gene (xynA) from Bacillus pumilus was introduced near the origin of replication and the lipase gene (lipY2) from Yarrowia lipolytica was introduced into the center of the origin of replication. The results showed that the activity of xylanase and lipase reached(58±2.07)U/mL and (207±10.62)U/mL, respectively when the strain was fermented in shake flask for 44h. Their efficient secretion and expression ability promoted the utilization rate of the fermentation substrate by Bacillus licheniformis, thus increasing the content of reducing sugar and total nitrogen in the medium and decomposing nitrogen compounds in the precipitate. Compared with the original strain, the bacterial biomass of the mutant strain was increased by 11.76%, the fermentation cycle of alkaline protease was shortened by 4h, and the yield of alkaline protease was increased by 14.41%. The enrichment of the secreted enzymes and the improvement of fermentation performance of Bacillus licheniformis 2709 provide a method for modification of Bacillus licheniformis as a microbial agent in the feed industry.



Key wordsBacillus licheniformis      Xylanase      Lipase      Alkaline protease     
Received: 27 November 2020      Published: 08 April 2021
ZTFLH:  Q815  
Corresponding Authors: Yi-zhi JI,Fu-ping LU     E-mail: jiyizhi@buu.edu.cn;lfp@tust.edu.cn
Cite this article:

ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis. China Biotechnology, 2021, 41(2/3): 53-62.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2011050     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I2/3/53

Strains or plasmids Description Source
E. coli EC135 Knockout vectors construction Chinese Academy of Science
E. coli EC135/pM.Bam Plasmid DNA methylation modifcation Chinese Academy of Science
B. licheniformis 2709(BL 2709) Wild strain CICC
Bacillus pumilus A30 PCR template of xylanase mature peptide gene CICC
pKSVT Temperature-sensitive shuttle plasmid, Kanar Hubei University
pPIC9K-mutants PCR template of lipase mature peptide gene [14]
Primer name Sequence (5'-3') Restriction sites
xyn-F CGATTGGCATTTCACCCCATCAATACGCCTTTCACATGA
xyn-R GATGAGGTGTGGGTAGGGCCATCCGACGATCAT
lip-F CGTCGATCATGCGTCAGCCATCAATACGCCTTTCACATG
lip-R GAGGTGAAGCAGAAGACGGCCATCCGACGATCAT
up-xF GAATTCCTGCAGCCCGGGGGATCCTAGGTCCCGACTAACCCTGAG BamHI
up-xR GTGAAAGGCGTATTGATGGGGTGAAATGCCAATCGA
down-xF ATGATCGTCGGATGGCCCTACCCACACCTCATCCCC
down-xR CTTTTCTACGAGCTCCACCGCGGAGCCCAAACCAAGAGGCT SacII
up-lF GAATTCCTGCAGCCCGGGGGATCCACGATGAAACGGGATCGC BamHI
up-lR GAAAGGCGTATTGATGGCTGACGCATGATCGACG
down-lF ATGATCGTCGGATGGCCGTCTTCTGCTTCACCTCAAATAAC
down-lR GAATTCCTGCAGCCCGGGGGATCCCCGGATACAATTCGGCTG SacII
T-F GATAACTCGGCGTATGTTATTCAAG
T-R GAAGTGGTGGCCTAACTACGG
V1-F CAATACCGCGCTTACCCTATC
V1-R GTAATGGAGCAGTATCCATATCTGAA
V2-F GATGCTTCCACCGGAAGTTG
V2-R AGGTATCGCCGCTGCATAC
Table 1 Strains,vectors and primers used in this study
Fig.1 Identification of the construction of integrative vector fragments and the recombinant vector by colony PCR (a) Identification of the construction of integrative vector fragments 1: The upstream homologous sequence of position I; 2: The xynA expression cassette sequence; 3: The downstream homologous sequence of position I; 4: The upstream homologous sequence of position II; 5: The lipY2 expression cassette sequence; 6: A homologous sequence downstream of position II (b) Identification of the construction of recombinant vector 1: PCR verification of integration position I upstream homologous sequence, downstream homologous sequence and the xynA expression cassette; 2: PCR verification of integration position II upstream homologous sequence, downstream homologous sequence and the lipY2 expression cassette M: 1kb DNA Ladder
Fig.2 Identification of the mutant strain by colony PCR M: 1kb DNA Ladder (a) Identification of the single-exchange strains for integration position I 1-4: The correct single-exchange strain for integration position I; 5:The negative control BL 2709 strain (b) Identification of the double-exchange strains for integration position I 1-4: The correct double-exchange strain for integration position I; 5: The negative control BL 2709 strain (c) Identification of the single-exchange strains for integration position II 1-4: The correct single-exchange strains at the integration position II; 5: The negative control BL 2709 strain (d) Identification of the double-exchange strains for integration position II 1-4: The correct double-exchange strains at the integration position I; 5: The negative control BL 2709 strain
Fig.3 Gene editing method based on temperature-sensitive plasmid and gene expression cassette in B. licheniformis (a) Schematic diagram of gene editing method based on temperature-sensitive plasmid (b) Genome locations to be inserted the xynA and lipY2 gene expression cassette in B. licheniformis
Fig.4 The cell biomass of the BL 2709-xynA-lipY2 and BL 2709
Fig.5 The content of reducing sugar in strain fermentation of the BL 2709-xynA-lipY2 and BL 2709
Fig. 6 The content of total nitrogen of fermentation in the fermentation medium of BL 2709-xynA-lipY2 and BL 2709 (a) The content of total nitrogen of fermentation supernatant in the fermentation medium of BL 2709-xynA-lipY2 and BL 2709 (b) The content of total nitrogen of fermentation precipitate in the fermentation medium of BL 2709-xynA-lipY2 and BL 2709
Fig.7 Xylanase activities of the BL 2709-xynA-lipY2 and BL 2709
Fig.8 Lipase activities of the BL 2709-xynA-lipY2 and BL 2709
Fig.9 Alkaline protease enzyme activity of the BL 2709-xynA-lipY2 and BL 2709
[1]   Zhou C, Zhou H Y, Zhang H T, et al. Optimization of alkaline protease production by rational deletion of sporulation related genes in Bacillus licheniformis. Microbial Cell Factories, 2019,18(1):1-12.
doi: 10.1186/s12934-018-1049-x pmid: 30609921
[2]   俞俊棠, 唐孝宣, 邬行彦, 等. 新编生物工艺学. 北京:化学工业出版社, 2003.
[2]   Yu J T, Tang X X, Wu X Y, et al. New edition of biotechnology. Beijing:Chemical Industry Press, 2003.
[3]   Frias J, Song Y S, Martinez-Villaluenga C, et al. Immunoreactivity and amino acid content of fermented soybean products. Journal of Agricultural and Food Chemistry, 2008,56(1):99-105.
doi: 10.1021/jf072177j pmid: 18072744
[4]   陈龙, 吴兴利, 于维, 等. Bacillus velezensis157混合固态发酵生产多种木质纤维素酶的发酵条件优化. 中国农业大学学报, 2019,24(9):71-78.
[4]   Chen L, Wu X L, Yu W, et al. Optimization of fermentation conditions for the production of various lignocellulases by Bacillus velezensis 157 under solid-state fermentation. Journal of China Agricultural University, 2019,24(9):71-78.
[5]   Li M, Chen Z, Zhang X, et al. Enhancement of avermectin and ivermectin production by overexpression of the maltose ATP-binding cassette transporter in Streptomyces avermitilis. Bioresource Technology, 2010,101(23):9228-9235.
[6]   Zhan Y Y, Sheng B J, Wang H, et al. Rewiring glycerol metabolism for enhanced production of poly-γ-glutamic acid in Bacillus licheniformis. Biotechnology for Biofuels, 2018,11(1):1-14.
[7]   Cai D B, Zhang B W, Rao Y, et al. Improving the utilization rate of soybean meal for efficient production of bacitracin and heterologous proteins in the aprA deficient strain of Bacillus licheniformis. Applied Microbiology and Biotechnology, 2019,103(12):4789-4799.
[8]   高雅君, 丁长河. 木聚糖酶在食品工业中的应用研究进展. 粮食与食品工业, 2017,24(2):32-36.
[8]   Gao Y J, Ding C H. Research progress on the application of xylanase in food industry. Cereal & Food Industry, 2017,24(2):32-36.
[9]   Gutiérrez-Ayesta C, Carelli A A, Ferreira M L. Relation between lipase structures and their catalytic ability to hydrolyse triglycerides and phospholipids. Enzyme and Microbial Technology, 2007,41(1-2):35-43.
[10]   马文锋, 毛培, 刘芦鹏, 等. 木聚糖酶和果胶酶对小麦-玉米-豆粕型日粮的体外酶解研究. 家畜生态学报, 2020,41(6):41-45.
[10]   Ma W F, Mao P, Liu L P, et al. Effect of xylanase and pectinase on the enzymolysis efficiency in wheat-corn-soybean meal diet by in vitro method. Journal of Domestic Animal Ecology, 2020,41(6):41-45.
[11]   Liu Y H, Shi C S, Li D K, et al. Engineering a highly efficient expression system to produce BcaPRO protease in Bacillus subtilis by an optimized promoter and signal peptide. International Journal of Biological Macromolecules, 2019,138:903-911.
pmid: 31356949
[12]   Cai D, Wei X, Qiu Y, et al. High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase. Journal of Applied Microbiology, 2016,121(3):704-712.
doi: 10.1111/jam.13175 pmid: 27159567
[13]   Zhang W, Yang Y K, Liu X X, et al. Development of a secretory expression system with high compatibility between expression elements and an optimized host for endoxylanase production in Corynebacterium glutamicum. Microbial Cell Factories, 2019,18(1):72-82.
[14]   张莹. 脂肪酶LipY2热稳定性的理性改造. 天津: 天津科技大学, 2018.
[14]   Zhang Y. Improvement of thermal stability of lipase LipY2 by rational transformation. Tianjin: Tianjin University of Science & Technology, 2018.
[15]   萨姆布鲁克J, 拉塞尔 D. 分子克隆实验指南. 第三版. 黄培堂译. 北京: 科学出版社, 2002.
[15]   Sambrook J, Russell D. Molecular cloning experiment guide. 3rd ed. Huang P T. Beijing:Science Press, 2002.
[16]   国家食品药品监督管理总局, 国家卫生和计划生育委员会. 食品安全国家标准食品微生物学检验乳酸菌检验. GB 4789.35-2016. 北京:中国标准出版社, 2016: 1-8.
[16]   State Food and Drug Administration, State Health and Family Planning Commission. National food safety standard.food microbiological examination:lactic acid bacteria. GB 4789.35-2016. Beijing: China Standard Press, 2016: 1-8.
[17]   赵凯, 许鹏举, 谷广烨. 3,5-二硝基水杨酸比色法测定还原糖含量的研究. 食品科学, 2008,29(8):534-536.
[17]   Zhao K, Xu P J, Gu G Y. Study on determination of reducing sugar content using 3, 5-dinitrosalicylic acid method. Food Science, 2008,29(8):534-536.
[18]   国家市场监督管理总局, 中国国家标准化管理委员会. 饲料中粗蛋白的测定凯氏定氮法. GB/T 6432-2018. 北京:中国标准出版社, 2018: 1-4.
[18]   State Administration of Market Supervision and Administration, China National Standardization Administration. Determination of crude protein in feeds-Kjeldahl method. GB/T 6432-2018. Beijing:China Standard Press, 2018: 1-4.
[19]   Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 1959,31(3):426-428.
[20]   中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 脂肪酶制剂. GB/T 23535-2009. 北京:中国标准出版社, 2009: 1-9.
[20]   General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration Lipase preparations. GB/T 23535-2009. Beijing:China Standard Press, 2009: 1-9.
[21]   中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 蛋白酶制剂. GB/T 23527-2009. 北京:中国标准出版社, 2009: 1-13.
[21]   General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration Protease preparations. GB/T 23527-2009. Beijing:China Standard Press, 2009: 1-13.
[22]   王斌, 张腾霄, 刘利军, 等. 枯草芽孢杆菌对灵芝发酵液糖类成分降解规律研究. 食品工业, 2017,38(9):184-187.
[22]   Wang B, Zhang T X, Liu L J, et al. Influence the degradation of sugars in ganoderma lucidum fermentation broth by Bacillus subtilis. The Food Industry, 2017,38(9):184-187.
[23]   Yu X X, Xu J T, Liu X Q, et al. Identification of a highly efficient stationary phase promoter in Bacillus subtilis. Scientific Reports, 2015,5:18405.
doi: 10.1038/srep18405 pmid: 26673679
[24]   王越. 长野芽孢杆菌普鲁兰酶基因在枯草芽孢杆菌中的整合表达. 无锡: 江南大学, 2019.
[24]   Wang Y. Integrative expression of Bacillus naganoensis pullulanase from Bacillus subtilis. Wuxi: Jiangnan University, 2019.
[25]   张飞燕, 何敏, 王振华, 等. 铜绿假单胞菌脂肪酶基因(LipA)在枯草芽孢杆菌pab02中的整合表达. 湖南农业大学学报(自然科学版), 2017,43(2):200-205.
[25]   Zhang F Y, He M, Wang Z H, et al. Clone and integrative expression of gene lipase LipA from Pseudomonas aeruginosa in Bacillus subtilis. Journal of Hunan Agricultural University (Natural Science), 2017,43(2):200-205.
[26]   Veith B, Herzberg C, Steckel S, et al. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. Journal of Molecular Microbiology and Biotechnology, 2004,7(4):204-211.
doi: 10.1159/000079829 pmid: 15383718
[27]   Guan C R, Cui W J, Cheng J T, et al. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis. New Biotechnology, 2016,33(3):372-379.
[28]   饶忆, 师璐, 王豪, 等. 通过优化表达元件及培养基组分提高地衣芽胞杆菌中碱性丝氨酸蛋白酶产量. 微生物学通报, 2019,46(6):1327-1335.
[28]   Rao Y, Shi L, Wang H, et al. Enhancement production of subtilisin in Bacillus licheniformis by screening promoters and signal peptides and optimization of fermentation medium. Microbiology China, 2019,46(6):1327-1335.
[29]   魏强, 张薇, 石黑虎, 等. 地衣芽孢杆菌(Bacillus licheniformis)10236发酵条件的优化. 河北农业科学, 2019,23(5):65-70.
[29]   Wei Q, Zhang W, Shi H H, et al. Optimization of Fermentation Conditions of Bacillus licheniformis 10236. Journal of Hebei Agricultural Sciences, 2019,23(5):65-70.
[30]   王珊珊, 陈燕, 刘盾, 等. 地衣芽孢杆菌LS-1产蛋白酶发酵条件的优化. 安徽农学通报, 2018,24(24):22-24.
[30]   Wang S S, Chen Y, Liu D, et al. Optimization of fermentation conditions of a protease-producing strain LS-1. Anhui Agricultural Science Bulletin, 2018,24(24):22-24.
[31]   Gu Y, Lv X, Liu Y F, et al. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis. Metabolic Engineering. 2019,51:59-69.
doi: 10.1016/j.ymben.2018.10.002 pmid: 30343048
[32]   Kaczmarek S A, Rogiewicz A, Mogielnicka M, et al. The effect of protease, amylase, and nonstarch polysaccharide-degrading enzyme supplementation on nutrient utilization and growth performance of broiler chickens fed corn-soybean meal-based diets. Poultry Science, 2014,93(7):1745-1753.
doi: 10.3382/ps.2013-03739 pmid: 24864284
[1] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[2] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[3] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[4] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[5] Ji-ping LI,Chang-jie BAO,Guang CHEN,Si-tong ZHANG. Research Advances in Heterologous Expression of Xylanase[J]. China Biotechnology, 2019, 39(7): 91-99.
[6] Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. The Effective of Additives on the Immobilization of Lipase by Microporous Absorbent Resin[J]. China Biotechnology, 2019, 39(4): 38-51.
[7] Yin YAO,Qi MIN,Hai-rong XIONG,Li ZHANG. Co-expression of xylanase and mannanase in Pichia pastoris and the enzymatic analyses[J]. China Biotechnology, 2019, 39(3): 37-45.
[8] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[9] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[10] Hong-qiu SHI,Dai-ming ZHA,Bing-huo ZHANG,Han-quan LI. Research Advances in Whole-cell Lipases[J]. China Biotechnology, 2018, 38(11): 51-58.
[11] YANG Qing, WANG Bin, WANG Ya-wei, ZHANG Hua-shan, XIONG Hai-rong, ZHANG Li. Comparison of Signal Peptides for Two Hemicellulase Secretory Expression[J]. China Biotechnology, 2017, 37(8): 15-22.
[12] YANG Jian-wei, XUE Zheng-lian, ZHU Hao, YANG Meng, WANG Zhou. Study on the Mutagenic Effect of Phospholipase A1 Recombinant Plasmid by ARTP[J]. China Biotechnology, 2017, 37(6): 78-85.
[13] YU Xiao-dan, WU Xiu-xiu, YAO Dong-sheng, LIU Da-ling, XIE Chun-fang. Trypsin-resistant Improvement of Bacillus subtilis β-1,4-endoxylanase by Rational Design Based on Molecular Structure Evaluation[J]. China Biotechnology, 2016, 36(8): 80-88.
[14] LI Shuai, SHAN Hong-yu, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. The Role of Phosphoinositide Phospholipase C in Expression Regulation of DREB2[J]. China Biotechnology, 2016, 36(4): 110-115.
[15] CAO Ying-ying, DENG Dun, ZHANG Yun, SUN Ai-jun, XIA Fang-liang, HU Yun-feng. Cloning, Expression and Characterization of a Novel Psychrophile Lipase from the Deep Sea of the South China Sea[J]. China Biotechnology, 2016, 36(3): 43-52.