Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (2/3): 94-111    DOI: 10.13523/j.cb.2305045
综述     
肿瘤靶向抑制剂的PROTACs设计及在抗肿瘤新药开发中的应用*
李婧绮,吴定宇,谭睿**()
西南交通大学生命科学与工程学院 成都 610031
PROTACs’ Design of Tumor-targeting Inhibitors and Their Use in the Development of New Anti-tumor Drugs
LI Jingqi,WU Dingyu,TAN Rui**()
College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
 全文: PDF(2022 KB)   HTML
摘要:

蛋白质的非正常表达往往会直接或间接导致癌症的发生。目前,靶向特定蛋白质的小分子抑制剂在肿瘤治疗领域中得到了广泛使用。然而,小分子抑制剂存在易使机体产生耐药性、靶蛋白范围有限及毒性较高等问题,限制了其临床应用。由此,蛋白质水解靶向嵌合体技术应运而生。蛋白质水解靶向嵌合体(proteolysis-targeting chimaeras, PROTACs)是一种人工合成的小分子化合物,由靶蛋白配体、连接体和E3泛素连接酶配体三部分组成。它可以利用人体自身的泛素-蛋白酶体系统(ubiquitin-proteasome system, UPS)使目标蛋白质泛素化并降解,在一定程度上解决了过度使用小分子抑制剂而产生耐药性的问题,且具有低毒性的优点。因此,综合我国发病率排名前五的癌症,总结在癌症领域利用已有小分子抑制剂开发的PROTACs的设计及应用,以期予以新药研究人员启发,扩展小分子靶向抑制剂的使用,突破难以成药位点的药物选择。

关键词: 蛋白质水解靶向嵌合体蛋白质降解癌症泛素-蛋白酶体系统    
Abstract:

Abnormal protein expression often leads directly or indirectly to the development of cancer. Currently, small-molecule inhibitors that target specific proteins are widely used in tumor therapy. However, small-molecule inhibitors have problems such as susceptibility to drug resistance, limited range of target proteins, and high toxicity, which limit their clinical application. As a result, proteolysis-targeting chimaera technology has emerged. Proteolysis targeting chimaeras (PROTACs) are a type of synthetic small-molecule compound consisting of target protein ligand, linker and E3 ubiquitin ligase ligand. It can use the human body’s own ubiquitin-proteasome system (UPS) to ubiquitinate and degrade the target protein, which to some extent solves the problem of drug resistance caused by overuse of small-molecule inhibitors, and has the advantage of low toxicity. Therefore, this review has summarized the design and application of PROTACs developed by using existing small-molecule inhibitors in the field of cancer, based on the top five cancers with the highest incidence rate in China, with the aim of giving inspiration to new drug researchers, expanding the use of small-molecule targeted inhibitors, and breaking through the selection of drugs that are difficult to become drug sites.

Key words: Proteolysis-targeting chimaeras    Protein degration    Cancer    Ubiquitin-proteasome system
收稿日期: 2023-05-28 出版日期: 2024-04-03
ZTFLH:  Q814  
基金资助: 四川省中医药管理局团队项目(2022C010);四川省中医药管理局重点项目(2021ZD005);四川省中医药管理局重点项目(2021ZD018);四川省应急重大项目(2021XYCZ008)
通讯作者: **电子信箱:tanrui@swjtu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李婧绮
吴定宇
谭睿

引用本文:

李婧绮, 吴定宇, 谭睿. 肿瘤靶向抑制剂的PROTACs设计及在抗肿瘤新药开发中的应用*[J]. 中国生物工程杂志, 2024, 44(2/3): 94-111.

LI Jingqi, WU Dingyu, TAN Rui. PROTACs’ Design of Tumor-targeting Inhibitors and Their Use in the Development of New Anti-tumor Drugs. China Biotechnology, 2024, 44(2/3): 94-111.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2305045        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I2/3/94

图1  PROTACs作用原理图
招募E3泛素连接酶名称 配体名称 配体结构 参考文献
VHL VH032 [9]
CRBN Thalidomide [10]
cIAP1 GDC-0152 [11]
MDM2 Nutlin-3 [12]
表1  常见E3连接酶配体结构
连接体类型 连接体结构 参考文献
聚乙二醇类 [13]
氮杂环类 [14]
饱和烷基类 [15]
不饱和烷基类 [16]
新型 [17]
表2  常见连接体结构
PROTACs
名称
靶蛋白 PROTACs结构 POI
配体来源
肺癌类型 作用通路 参考
文献
- EGFR Gefitinib NSCLC PI3K-AKT [21]
YF135 KRAS MRTX849 NSCLC RAS-RAF-
MEK-ERK
[24]
SIAIS117 ALK Brigatinib NSCLC、
SCLC
PI3K-AKT、
STAT3
[25]
DT2216 BCL-XL ABT263 NSCLC、
SCLC
- [26]
ARV-825 BET(BRD4) OTX015 NSCLC Myc [27]
- SOS1 BI 1701963 NSCLC RAS-RAF-
MEK-ERK
[28]
D-PROTAC FAK Defactinib NSCLC PI3K-AKT [29]
SJF-0628 BRAF Vemurafenib NSCLC RAS-RAF-
MEK-ERK
[30]
SD-36 STAT3 SI-109 - STAT3、Myc [31]
SHP2-D26 SHP2 Compound 5 NSCLC RAS-RAF-
MEK-ERK、
PI3K-AKT
[32]
表3  肺癌相关PROTACs
PROTACs
名称
靶蛋白 PROTACs结构 POI
配体来源
作用通路 参考
文献
A1874 BRD4 JQ1 Myc [34-
35]
- CDK9 Aminopyrazole
analog
CDK9-
NELF/DSIF
[37]
P4B BRAF(V600E) BI 882370 RAS-RAF-
MEK-ERK
[38]
SK-575 PARP1 olaparib PARP1-CycT1 [15]
NR-7h P38 PH-797804 JNK/P38 MAPK [39]
MS432 MEK1/2 PD0325901 RAS-RAF-
MEK-ERK
[40]
ERK-
CLIPTAC
BRD4、 ERK1/2 ERK1/2
inhibitor
RAS-RAF-
MEK-ERK
[41]
CG416 TRKA/C GNF-8625 PLC-γ1 [42]
- HDAC1/2/3 CI-994 - [43]
- PDEδ Deltazinone RAS-RAF-
MEK-ERK
[44]
表4  结直肠癌相关PROTACs
PROTACs
名称
靶蛋白 PROTACs结构 POI配体来源 作用通路 参考
文献
PRO-6E c-MET Crizotinib RAS-RAF-
MEK-ERK、
Myc
[47]
P7 VEGFR-2 W27 VEGF-
VEGFR2
[49]
SDL-1 STAT3 S3I-201 STAT3 [50]
CH7C4 HER2 Tucatinib PI3K-AKT、
RAS-RAF-
MEK-ERK
[5]
ARV-825 BRD4 OTX015 Myc-Targets、
G2M-
Checkpoint
[51]
表5  胃癌相关PROTACs
PROTACs
名称
靶蛋白 PROTACs结构 POI配体来源 作用通路 参考
文献
BETd-260 BET HJB-97 Myc [54]
ARV-771 BET JQ1 RAS-RAF-
MEK-ERK、
JNK/P38 MAPK
[55]
- EGFR Dacomitinib PI3K-AKT、
RAS-RAF-
MEK-ERK
[56]
BI-3663 PTK2 BI-4464 - [57]
- MDM2 Ursolic acid PUMA-P53-
P21
[53]
表6  肝癌相关PROTACs
PROTACs
名称
靶蛋白 PROTACs结构 POI
配体来源
乳腺癌类型 作用通路 参考
文献
ERD-308 ERα Raloxifene ER+ ER [60]
CH7C4 HER2 Tucatinib HER2+ PI3K-AKT、
RAS-RAF-
MEK-ERK
[5]
THAL-SNS-
032
CDK9 SNS-032 ER/HER2+
HER2+
CDK9-
pTEFb
[62]
- CD12/CD13 Compound 3 TNBC DNA
damage、
apoptosis
[63]
YX-02-030 MDM2 RG7112D TNBC P53 [64]
NN3 PARP1 Niraparib TNBC P53、
PARP1-
GPX4
[65]
- eEF2K A484954 TNBC AMPK [66]
SGK3-
PROTACs1
SGK3 308-R ER+ PI3K-AKT-
mTOR
[67]
- TrkC Dasatinib TNBC - [68]
BP3 HSP90 BIIB021 TNBC及
ER+
AKT、P53 [69]
SNIPER
(TACC3)-1
TACC3 KHS101&
KHS108
ER+ - [70]
MS8815 EZH2 EPZ-6438 TNBC Myc [71]
- AR Enzalutamide TNBC AR [72]
MZ1 BET JQ1 TNBC DNA
damage、
apoptosis
[73]
表7  乳腺癌相关PROTACs
图2  FOXM1-PROTAC结构图
PROTACs名称 所处临床阶段
ARV-471 III期
ARV-110 III期
ARV-766 II期
CFT-7455 II期
ARV-766 II期
AC0682 I期
NX-2127 I期
HSK29116 I期
BGB-16673 I期
DT2216 I期
KT-474 I期
KT-333 I期
KT-413 I期
NX-5948 I期
FHD-609 I期
CG001419 I期
CFT8634 I期
表8  进入临床研究的PROTACs
[1] Jung K W, Won Y J, Kong H J, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2015. Cancer Research and Treatment, 2018, 50(2): 303-316.
doi: 10.4143/crt.2018.143
[2] Siegel R L, Miller K D, Fuchs H E, et al. Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 2021, 71(1): 7-33.
doi: 10.3322/caac.v71.1
[3] Boddy A M. The need for evolutionary theory in cancer research. European Journal of Epidemiology, 2023, 38(12): 1259-1264.
doi: 10.1007/s10654-022-00936-8
[4] Saadet E D, Tek I. Evaluation of chemotherapy-induced cutaneous side effects in cancer patients. International Journal of Dermatology, 2022, 61(12): 1519-1526.
doi: 10.1111/ijd.v61.12
[5] Hu M X, Li Y J, Li J X, et al. Discovery of potent and selective HER2 PROTAC degrader based Tucatinib with improved efficacy against HER2 positive cancers. European Journal of Medicinal Chemistry, 2022, 244: 114775.
doi: 10.1016/j.ejmech.2022.114775
[6] Wang Y, Jiang X Y, Feng F, et al. Degradation of proteins by PROTACs and other strategies. Acta Pharmaceutica Sinica B, 2020, 10(2): 207-238.
doi: 10.1016/j.apsb.2019.08.001 pmid: 32082969
[7] Zou Y T, Ma D H, Wang Y Y. The PROTAC technology in drug development. Cell Biochemistry and Function, 2019, 37(1): 21-30.
doi: 10.1002/cbf.3369 pmid: 30604499
[8] Shi C C, Zhang H P, Wang P L, et al. PROTAC induced-BET protein degradation exhibits potent anti-osteosarcoma activity by triggering apoptosis. Cell Death & Disease, 2019, 10: 815.
[9] Frost J, Galdeano C, Soares P, et al. Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition. Nature Communications, 2016, 7: 13312.
doi: 10.1038/ncomms13312 pmid: 27811928
[10] Fischer E S, Böhm K, Lydeard J R, et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature, 2014, 512: 49-53.
doi: 10.1038/nature13527
[11] Flygare J A, Beresini M, Budha N, et al. Discovery of a potent small-molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC-0152). Journal of Medicinal Chemistry, 2012, 55(9): 4101-4113.
doi: 10.1021/jm300060k pmid: 22413863
[12] Sun Y H, Zhao X W, Ding N, et al. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Research, 2018, 28: 779-781.
doi: 10.1038/s41422-018-0055-1 pmid: 29875397
[13] Shibata N, Nagai K, Morita Y, et al. Development of protein degradation inducers of androgen receptor by conjugation of androgen receptor ligands and inhibitor of apoptosis protein ligands. Journal of Medicinal Chemistry, 2018, 61(2): 543-575.
doi: 10.1021/acs.jmedchem.7b00168 pmid: 28594553
[14] Han X, Zhao L J, Xiang W G, et al. Strategies toward discovery of potent and orally bioavailable proteolysis targeting Chimera degraders of androgen receptor for the treatment of prostate cancer. Journal of Medicinal Chemistry, 2021, 64(17): 12831-12854.
doi: 10.1021/acs.jmedchem.1c00882 pmid: 34431670
[15] Cao C G, Yang J, Chen Y, et al. Discovery of SK-575 as a highly potent and efficacious proteolysis-targeting Chimera degrader of PARP 1 for treating cancers. Journal of Medicinal Chemistry, 2020, 63(19): 11012-11033.
doi: 10.1021/acs.jmedchem.0c00821
[16] Jiang X Y, Zhou J T, Wang Y, et al. PROTACs suppression of GSK-3β, a crucial kinase in neurodegenerative diseases. European Journal of Medicinal Chemistry, 2021, 210: 112949.
doi: 10.1016/j.ejmech.2020.112949
[17] Jin Y H, Lu M C, Wang Y, et al. Azo-PROTAC: novel light-controlled small-molecule tool for protein knockdown. Journal of Medicinal Chemistry, 2020, 63(9): 4644-4654.
doi: 10.1021/acs.jmedchem.9b02058
[18] 郑荣寿, 张思维, 孙可欣, 等. 2016年中国恶性肿瘤流行情况分析. 中国肿瘤杂志, 2023, 45(3):212-220.
doi: 10.3760/cma.j.cn112152-20220922-00647 pmid: 36944542
Zheng R S, Zhang S W, Sun K X, et al. Analysis of the epidemic situation of malignant tumors in China in 2016. Chin J Oncol, 2023, 45(3): 212-220.
doi: 10.3760/cma.j.cn112152-20220922-00647 pmid: 36944542
[19] Nicholson A G, Tsao M S, Beasley M B, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. Journal of Thoracic Oncology, 2022, 17(3): 362-387.
doi: 10.1016/j.jtho.2021.11.003
[20] Uribe M L, Marrocco I, Yarden Y. EGFR in cancer: signaling mechanisms, drugs, and acquired resistance. Cancers, 2021, 13(11): 2748.
[21] Burslem G M, Smith B E, Lai A C, et al. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chemical Biology, 2018, 25(1): 67-77.e3.
doi: S2451-9456(17)30353-7 pmid: 29129716
[22] Simanshu D K, Nissley D V, McCormick F. RAS proteins and their regulators in human disease. Cell, 2017, 170(1): 17-33.
doi: S0092-8674(17)30650-5 pmid: 28666118
[23] Uprety D, Adjei A A. KRAS: from undruggable to a druggable cancer target. Cancer Treatment Reviews, 2020, 89: 102070.
doi: 10.1016/j.ctrv.2020.102070
[24] Yang F, Wen Y L, Wang C F, et al. Efficient targeted oncogenic KRASG12C degradation via first reversible-covalent PROTAC. European Journal of Medicinal Chemistry, 2022, 230: 114088.
doi: 10.1016/j.ejmech.2021.114088
[25] Sun N, Ren C W, Kong Y, et al. Development of a Brigatinib degrader (SIAIS117) as a potential treatment for ALK positive cancer resistance. European Journal of Medicinal Chemistry, 2020, 193: 112190.
doi: 10.1016/j.ejmech.2020.112190
[26] Khan S, Zhang X, Lv D W, et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nature Medicine, 2019, 25: 1938-1947.
doi: 10.1038/s41591-019-0668-z
[27] Lu J, Qian Y M, Altieri M, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chemistry & Biology, 2015, 22(6): 755-763.
doi: 10.1016/j.chembiol.2015.05.009
[28] Zhou C, Fan Z S, Zhou Z H, et al. Discovery of the first-in-class agonist-based SOS 1 PROTACs effective in human cancer cells harboring various KRAS mutations. Journal of Medicinal Chemistry, 2022, 65(5): 3923-3942.
doi: 10.1021/acs.jmedchem.1c01774
[29] Liu J Y, Xue L, Xu X, et al. FAK-targeting PROTAC demonstrates enhanced antitumor activity against KRAS mutant non-small cell lung cancer. Experimental Cell Research, 2021, 408(2): 112868.
[30] Alabi S, Jaime-Figueroa S, Yao Z, et al. Mutant-selective degradation by BRAF-targeting PROTACs. Nature Communications, 2021, 12: 920.
doi: 10.1038/s41467-021-21159-7 pmid: 33568647
[31] Bai L C, Zhou H B, Xu R Q, et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell, 2019, 36(5): 498-511.e17.
doi: 10.1016/j.ccell.2019.10.002
[32] Wang M L, Lu J F, Wang M, et al. Discovery of SHP2-D26 as a first, potent, and effective PROTAC degrader of SHP2 protein. Journal of Medicinal Chemistry, 2020, 63(14): 7510-7528.
doi: 10.1021/acs.jmedchem.0c00471 pmid: 32437146
[33] Hajmirza A, Emadali A, Gauthier A, et al. BET family protein BRD4: an emerging actor in NFκB signaling in inflammation and cancer. Biomedicines, 2018, 6(1): 16.
[34] Hines J, Lartigue S, Dong H Q, et al. MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Research, 2019, 79(1): 251-262.
doi: 10.1158/0008-5472.CAN-18-2918 pmid: 30385614
[35] Qin A C, Jin H, Song Y, et al. The therapeutic effect of the BRD4-degrading PROTAC A1874 in human colon cancer cells. Cell Death & Disease, 2020, 11: 805.
[36] Sonawane Y A, Taylor M A, Napoleon J V, et al. Cyclin dependent kinase 9 inhibitors for cancer therapy. Journal of Medicinal Chemistry, 2016, 59(19): 8667-8684.
pmid: 27171036
[37] Robb C M, Contreras J I, Kour S, et al. Chemically induced degradation of CDK 9 by a proteolysis targeting chimera (PROTAC). Chemical Communications, 2017, 53(54): 7577-7580.
doi: 10.1039/C7CC03879H
[38] Posternak G, Tang X J, Maisonneuve P, et al. Functional characterization of a PROTAC directed against BRAF mutant V600E. Nature Chemical Biology, 2020, 16: 1170-1178.
doi: 10.1038/s41589-020-0609-7
[39] Donoghue C, Cubillos-Rojas M, Gutierrez-Prat N, et al. Optimal linker length for small molecule PROTACs that selectively target p38α and p38β for degradation. European Journal of Medicinal Chemistry, 2020, 201: 112451.
doi: 10.1016/j.ejmech.2020.112451
[40] Wei J L, Hu J P, Wang L, et al. Discovery of a first-in-class mitogen-activated protein kinase kinase 1/2 degrader. Journal of Medicinal Chemistry, 2019, 62(23): 10897-10911.
doi: 10.1021/acs.jmedchem.9b01528 pmid: 31730343
[41] Lebraud H, Wright D J, Johnson C N, et al. Protein degradation by In-cell self-assembly of proteolysis targeting chimeras. ACS Central Science, 2016, 2(12): 927-934.
doi: 10.1021/acscentsci.6b00280 pmid: 28058282
[42] Chen L Q, Chen Y K, Zhang C Y, et al. Discovery of first-In-class potent and selective tropomyosin receptor kinase degraders. Journal of Medicinal Chemistry, 2020, 63(23): 14562-14575.
doi: 10.1021/acs.jmedchem.0c01342 pmid: 33058680
[43] Smalley J P, Adams G E, Millard C J, et al. PROTAC-mediated degradation of class I histone deacetylase enzymes in corepressor complexes. Chemical Communications, 2020, 56(32): 4476-4479.
doi: 10.1039/d0cc01485k pmid: 32201871
[44] Cheng J F, Li Y, Wang X, et al. Discovery of novel PDEδ degraders for the treatment of KRAS mutant colorectal cancer. Journal of Medicinal Chemistry, 2020, 63(14): 7892-7905.
doi: 10.1021/acs.jmedchem.0c00929 pmid: 32603594
[45] Christensen J G, Burrows J, Salgia R. C-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Letters, 2005, 225(1): 1-26.
doi: 10.1016/j.canlet.2004.09.044 pmid: 15922853
[46] Lee H E, Kim M A, Lee H S, et al. MET in gastric carcinomas: comparison between protein expression and gene copy number and impact on clinical outcome. British Journal of Cancer, 2012, 107(2): 325-333.
doi: 10.1038/bjc.2012.237 pmid: 22644302
[47] Chen J J, Jin J M, Gu W J, et al. Crizotinib-based proteolysis targeting chimera suppresses gastric cancer by promoting MET degradation. Cancer Science, 2023, 114(5): 1958-1971.
doi: 10.1111/cas.v114.5
[48] Mander K A, Finnie J W. Tumour angiogenesis, anti-angiogenic therapy and chemotherapeutic resistance. Australian Veterinary Journal, 2018, 96(10): 371-378.
doi: 10.1111/avj.12747 pmid: 30255577
[49] Wang X R, Wang S, Mu H X, et al. Discovery of novel VEGFR-2-PROTAC degraders based on the localization of lysine residues via recruiting VHL for the treatment of gastric cancer. European Journal of Medicinal Chemistry, 2022, 244: 114821.
doi: 10.1016/j.ejmech.2022.114821
[50] Li H B, Wang L L, Cao F, et al. Design, synthesis, and biological characterization of a potent STAT3 degrader for the treatment of gastric cancer. Frontiers in Pharmacology, 2022, 13: 944455.
doi: 10.3389/fphar.2022.944455
[51] Liao X M, Qian X Q, Zhang Z M, et al. ARV-825 demonstrates antitumor activity in gastric cancer via MYC-targets and G2M-checkpoint signaling pathways. Frontiers in Oncology, 2021, 11: 753119.
doi: 10.3389/fonc.2021.753119
[52] Shebl B, Ng D, Lalazar G, et al. Targeting BCL-XL in fibrolamellar hepatocellular carcinoma. JCI Insight, 2022, 7(17): e161820.
[53] Qi Z W, Yang G L, Deng T, et al. Design and linkage optimization of ursane-thalidomide-based PROTACs and identification of their targeted-degradation properties to MDM2 protein. Bioorganic Chemistry, 2021, 111: 104901.
doi: 10.1016/j.bioorg.2021.104901
[54] Zhang H P, Li G Q, Zhang Y, et al. Targeting BET proteins with a PROTAC molecule elicits potent anticancer activity in HCC cells. Frontiers in Oncology, 2019, 9: 1471.
doi: 10.3389/fonc.2019.01471 pmid: 31993368
[55] Deng Y F, Yu C F, Chen L S, et al. ARV-771 acts as an inducer of cell cycle arrest and apoptosis to suppress hepatocellular carcinoma progression. Frontiers in Pharmacology, 2022, 13: 858901.
doi: 10.3389/fphar.2022.858901
[56] Shi S, Du Y, Huang L, et al. Discovery of novel potent covalent inhibitor-based EGFR degrader with excellent in vivo efficacy. Bioorganic Chemistry, 2022, 120: 105605.
doi: 10.1016/j.bioorg.2022.105605
[57] Popow J, Arnhof H, Bader G, et al. Highly selective PTK 2 proteolysis targeting chimeras to probe focal adhesion kinase scaffolding functions. Journal of Medicinal Chemistry, 2019, 62(5): 2508-2520.
doi: 10.1021/acs.jmedchem.8b01826
[58] Anderson W F, Katki H A, Rosenberg P S. Incidence of breast cancer in the United States: current and future trends. JNCI: Journal of the National Cancer Institute, 2011, 103(18): 1397-1402.
doi: 10.1093/jnci/djr257
[59] Nilsson S, Koehler K F, Gustafsson J Å. Development of subtype-selective oestrogen receptor-based therapeutics. Nature Reviews Drug Discovery, 2011, 10: 778-792.
doi: 10.1038/nrd3551 pmid: 21921919
[60] Hu J T, Hu B, Wang M L, et al. Discovery of ERD-308 as a highly potent proteolysis targeting Chimera (PROTAC) degrader of estrogen receptor (ER). Journal of Medicinal Chemistry, 2019, 62(3): 1420-1442.
doi: 10.1021/acs.jmedchem.8b01572 pmid: 30990042
[61] Yan M, Schwaederle M, Arguello D, et al. HER2 expression status in diverse cancers: review of results from 37, 992 patients. Cancer and Metastasis Reviews, 2015, 34(1): 157-164.
doi: 10.1007/s10555-015-9552-6
[62] Olson C M, Jiang B S, Erb M A, et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nature Chemical Biology, 2018, 14: 163-170.
doi: 10.1038/nchembio.2538 pmid: 29251720
[63] Yang J Z, Chang Y, Tien J C Y, et al. Discovery of a highly potent and selective dual PROTAC degrader of CDK12 and CDK13. Journal of Medicinal Chemistry, 2022, 65(16): 11066-11083.
doi: 10.1021/acs.jmedchem.2c00384 pmid: 35938508
[64] Adams C M, Mitra R, Xiao Y C, et al. Targeted MDM2 degradation reveals a new vulnerability for p53-inactivated triple-negative breast cancer. Cancer Discovery, 2023, 13(5): 1210-1229.
doi: 10.1158/2159-8290.CD-22-1131
[65] Li G, Lin S S, Yu Z L, et al. A PARP1 PROTAC as a novel strategy against PARP inhibitor resistance via promotion of ferroptosis in p53-positive breast cancer. Biochemical Pharmacology, 2022, 206: 115329.
doi: 10.1016/j.bcp.2022.115329
[66] Liu Y, Zhen Y Q, Wang G, et al. Designing an eEF2K-Targeting PROTAC small molecule that induces apoptosis in MDA-MB-231 cells. European Journal of Medicinal Chemistry, 2020, 204: 112505.
doi: 10.1016/j.ejmech.2020.112505
[67] Tovell H, Testa A, Zhou H J, et al. Design and characterization of SGK3-PROTAC1, an isoform specific SGK 3 kinase PROTAC degrader. ACS Chemical Biology, 2019, 14(9): 2024-2034.
doi: 10.1021/acschembio.9b00505
[68] Zhao B S, Burgess K. TrkC-targeted kinase inhibitors and PROTACs. Molecular Pharmaceutics, 2019, 16(10): 4313-4318.
doi: 10.1021/acs.molpharmaceut.9b00673 pmid: 31512882
[69] Liu Q Y, Tu G H, Hu Y, et al. Discovery of BP3 as an efficacious proteolysis targeting chimera (PROTAC) degrader of HSP90 for treating breast cancer. European Journal of Medicinal Chemistry, 2022, 228: 114013.
doi: 10.1016/j.ejmech.2021.114013
[70] Ohoka N, Nagai K, Hattori T, et al. Cancer cell death induced by novel small molecules degrading the TACC 3 protein via the ubiquitin-proteasome pathway. Cell Death & Disease, 2014, 5(11): e1513.
[71] Dale B, Anderson C, Park K S, et al. Targeting triple-negative breast cancer by a novel proteolysis targeting Chimera degrader of enhancer of zeste homolog 2. ACS Pharmacology & Translational Science, 2022, 5(7): 491-507.
[72] Wu Y C, Xue J Q, Li J. Chemical degrader enhances the treatment of androgen receptor-positive triple-negative breast cancer. Archives of Biochemistry and Biophysics, 2022, 721: 109194.
doi: 10.1016/j.abb.2022.109194
[73] Del Mar Noblejas-López M, Nieto-Jimenez C, Burgos M, et al. Activity of BET-proteolysis targeting chimeric (PROTAC) compounds in triple negative breast cancer. Journal of Experimental & Clinical Cancer Research, 2019, 38(1): 383.
[74] Wang K, Dai X Y, Yu A, et al. Peptide-based PROTAC degrader of FOXM1 suppresses cancer and decreases GLUT1 and PD-L 1 expression. Journal of Experimental & Clinical Cancer Research, 2022, 41(1): 289.
[75] Sakamoto K M, Kim K B, Kumagai A, et al. Protacs:chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(15): 8554-8559.
[76] Speltz T E, Danes J M, Stender J D, et al. A cell-permeable stapled peptide inhibitor of the estrogen receptor/coactivator interaction. ACS Chemical Biology, 2018, 13(3): 676-684.
doi: 10.1021/acschembio.7b01016 pmid: 29309722
[77] Liao H W, Li X, Zhao L Z, et al. A PROTAC peptide induces durable β-catenin degradation and suppresses Wnt-dependent intestinal cancer. Cell Discovery, 2020, 6: 35.
doi: 10.1038/s41421-020-0171-1 pmid: 32550000
[78] Naganuma M, Ohoka N, Tsuji G, et al. Development of chimeric molecules that degrade the estrogen receptor using decoy oligonucleotide ligands. ACS Medicinal Chemistry Letters, 2022, 13(1): 134-139.
doi: 10.1021/acsmedchemlett.1c00629 pmid: 35059133
[79] Chen S, Li X, Li Y H, et al. Design of stapled peptide-based PROTACs for MDM2/MDMX atypical degradation and tumor suppression. Theranostics, 2022, 12(15): 6665-6681.
doi: 10.7150/thno.75444 pmid: 36185610
[80] Shao J W, Yan Y Q, Ding D L, et al. Destruction of DNA-binding proteins by programmable oligonucleotide PROTAC (O’PROTAC): effective targeting of LEF1 and ERG. Advanced Science, 2021, 8(20): e2102555.
[81] Yan Y Q, Shao J W, Ding D L, et al. 3-Aminophthalic acid, a new cereblon ligand for targeted protein degradation by O’PROTAC. Chemical Communications, 2022, 58(14): 2383-2386.
doi: 10.1039/D1CC06525D
[82] Scott D E, Rooney T P C, Bayle E D, et al. Systematic investigation of the permeability of androgen receptor PROTACs. ACS Medicinal Chemistry Letters, 2020, 11(8): 1539-1547.
doi: 10.1021/acsmedchemlett.0c00194 pmid: 32832021
[83] Lai A C, Toure M, Hellerschmied D, et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angewandte Chemie (International Ed in English), 2016, 55(2): 807-810.
doi: 10.1002/anie.v55.2
[84] Remillard D, Buckley D L, Paulk J, et al. Degradation of the BAF complex factor BRD 9 by heterobifunctional ligands. Angewandte Chemie (International Ed in English), 2017, 56(21): 5738-5743.
doi: 10.1002/anie.v56.21
[85] Hsu H T, Chen H M, Yang Z, et al. Recruitment of RNA polymerase II by the pioneer transcription factor PHA-4. Science, 2015, 348(6241): 1372-1376.
doi: 10.1126/science.aab1223 pmid: 26089518
[86] Gadd M S, Testa A, Lucas X, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nature Chemical Biology, 2017, 13: 514-521.
doi: 10.1038/nchembio.2329 pmid: 28288108
[87] Ottis P, Toure M, Cromm P M, et al. Assessing different E 3 ligases for small molecule induced protein ubiquitination and degradation. ACS Chemical Biology, 2017, 12(10): 2570-2578.
doi: 10.1021/acschembio.7b00485
[88] Békés M, Langley D R, Crews C M. PROTAC targeted protein degraders: the past is prologue. Nature Reviews Drug Discovery, 2022, 21: 181-200.
doi: 10.1038/s41573-021-00371-6 pmid: 35042991
[89] Gao J, Yang L, Lei S M, et al. Stimuli-activatable PROTACs for precise protein degradation and cancer therapy. Science Bulletin, 2023, 68(10): 1069-1085.
doi: 10.1016/j.scib.2023.04.028 pmid: 37169612
[90] Wang W J, Zhou Q Z, Jiang T, et al. A novel small-molecule PROTAC selectively promotes tau clearance to improve cognitive functions in Alzheimer-like models. Theranostics, 2021, 11(11): 5279-5295.
doi: 10.7150/thno.55680 pmid: 33859747
[91] Tomoshige S, Nomura S, Ohgane K, et al. Discovery of small molecules that induce the degradation of huntingtin. Angewandte Chemie, 2017, 129(38): 11688-11691.
doi: 10.1002/ange.v129.38
[92] Kargbo R B. PROTAC compounds targeting α-synuclein protein for treating neurogenerative disorders: Alzheimer’s and Parkinson’s diseases. ACS Medicinal Chemistry Letters, 2020, 11(6): 1086-1087.
doi: 10.1021/acsmedchemlett.0c00192
[93] Li M X, Yang Y Q, Zhao Q Y, et al. Degradation versus inhibition: development of proteolysis-targeting chimeras for overcoming statin-induced compensatory upregulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Journal of Medicinal Chemistry, 2020, 63(9): 4908-4928.
doi: 10.1021/acs.jmedchem.0c00339
[94] Degorce S L, Tavana O, Banks E, et al. Discovery of proteolysis-targeting Chimera molecules that selectively degrade the IRAK3 pseudokinase. Journal of Medicinal Chemistry, 2020, 63(18): 10460-10473.
doi: 10.1021/acs.jmedchem.0c01125 pmid: 32803978
[1] 施慧琳, 李伟, 靳晨琦, 徐萍, 王玥. 靶向蛋白质降解技术发展态势分析*[J]. 中国生物工程杂志, 2024, 44(2/3): 190-198.
[2] 韩佳, 范月蕾, 毛开云. 溶瘤病毒市场及研发格局分析*[J]. 中国生物工程杂志, 2023, 43(6): 87-101.
[3] 李雨桐, 崔天琦, 张海林, 于广乐, 栾霁, 王海龙. 肿瘤靶向细菌Escherichia coli Nissle 1917在癌症治疗中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 54-68.
[4] 张鑫, 张瑞, 唐景峰. AMOT家族成员的功能研究及在癌症治疗中的潜在应用*[J]. 中国生物工程杂志, 2023, 43(2/3): 104-119.
[5] 韩春丽,王汉杰. 工程生物活药在肿瘤免疫治疗中的应用[J]. 中国生物工程杂志, 2022, 42(10): 39-50.
[6] 张慧,陈华宁,库德莱迪·库尔班,王松娜,刘嘉扬,赵缜,叶丽. Wnt/β-catenin信号通路与癌症发生发展及其免疫治疗*[J]. 中国生物工程杂志, 2022, 42(1/2): 104-111.
[7] 杨万斌,徐燕,卓士铉,王心怡,李雅静,郭一凡,张正光,郭园园. 长链非编码RNA相关表观遗传修饰在癌症中的进展*[J]. 中国生物工程杂志, 2021, 41(8): 59-66.
[8] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[9] 唐德平,邢梦洁,宋文涛,姚慧慧,毛爱红. microRNA治疗在癌症及其他疾病中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 64-73.
[10] 蒋析文,董子维,刘悦,朱小亚. 生物标记物与精准医疗研究进展[J]. 中国生物工程杂志, 2019, 39(2): 74-81.
[11] 堵晶晶, 谭镇东, 刘辰东, 巫小倩, 张培文, 张顺华, 朱砺. 长链非编码RNA的研究现状[J]. 中国生物工程杂志, 2016, 36(9): 59-74.
[12] 吴美玉, 王海军, 程继亮, 翟凤, 李校堃, 姜潮. 成纤维细胞生长因子17研究进展[J]. 中国生物工程杂志, 2016, 36(3): 82-86.
[13] 景园雅, 陈平, 常建锋, 陈苏. 自噬与癌症[J]. 中国生物工程杂志, 2015, 35(11): 70-76.
[14] 安云鹤, 李宝明, 李越, 尹玲, 曲俊杰, 苏晓星, 武会娟. 癌症基因组测序方案制定的研究进展[J]. 中国生物工程杂志, 2014, 34(11): 9-17.
[15] 王一, 田海山, 李校堃. 成纤维细胞生长因子8(FGF8)研究进展[J]. 中国生物工程杂志, 2011, 31(01): 75-80.