Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (4): 1-8    DOI: 10.13523/j.cb.2012040
研究报告     
SIRT2抑制对MPP+诱导的帕金森病细胞模型凋亡和线粒体动态平衡的影响*
段阳阳,张凤亭,成江,石瑾,杨娟,李海宁()
宁夏医科大学临床医学院 银川 750004
The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+
DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning()
School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
 全文: PDF(1525 KB)   HTML
摘要:

探究siRNA敲减沉默信息调节因子2(SIRT2)对1-甲基-4-苯基吡啶离子(MPP+)诱导的帕金森病细胞模型细胞损伤的影响和机制。CCK-8法检测不同浓度MPP+处理对体外培养小鼠海马神经元HT-22细胞生存率的影响。将细胞分为对照组、MPP+最佳浓度处理组(1 mmol/L MPP+处理组)、阴性转染组(对照组基础上转染SIRT2阴性序列)、SIRT2 siRNA处理组(损伤组基础上转染SIRT2 siRNA)。观察各组细胞凋亡情况,检测凋亡相关蛋白(Bcl-2、Bax、Caspase-9)、线粒体分裂及融合相关蛋白(Drp1、Fis1、OPA1、Mfn1、Mfn2)。与对照组相比,MPP+处理组细胞抑制率均升高,细胞抑制率随MPP+浓度增加而逐渐增加(P<0.05)。与SIRT2 siRNA转染组相比,损伤组Bax、Caspase-9、Drp1、Fis1蛋白表达和细胞凋亡率升高,Bcl-2、Mfn1、Mfn2蛋白表达降低(P<0.05)。SIRT2在MPP+诱导帕金森病细胞模型中表达升高,抑制SIRT2可减轻MPP+诱导帕金森病细胞模型中细胞凋亡并促进线粒体融合,从而对神经元具有一定的保护作用。

关键词: 帕金森病模型细胞沉默信息调节因子2凋亡线粒体分裂及融合siRNA沉默技术    
Abstract:

To investigate the effect and mechanism of cell apoptosis of siRNA knockdown silent information regulator 2 (SIRT2) in Parkinson’s disease model cells induced by 1-methyl-4-phenylpyridinium (MPP+). Immortalized mouse hippocampal neuron HT-22 cells were cultured in vitro and treated with MPP + at different concentrations, and CCK-8 assay was used to detect cell inhibition. The cells were divided into control group, MPP+ optimal concentration group (1 mmol/L MPP+ treatment, injury group), the negative transfection group (based on the control group which was transfected with SIRT2 negative sequence), and the SIRT2-siRNA treatment group (based on the injury group which was transfected with SIRT2-siRNA). The apoptosis of cells in each group was observed, apoptosis-related proteins (Bcl-2, Bax, Caspase-9) and the main proteins mediating fission and fusion of mitochondrial function (Drp1, Fis1, OPA1, Mfn1, Mfn2) were detected by Western blot. Compared with the control group, the cell inhibition rate of MPP+ treatment group increased, and with the concentration increased, the inhibition rate gradually increased (P<0.05). Compared with the SIRT2 siRNA treatment group, the injury group increased the expression of apoptosis and mitochondrial fission factors (Bax, Caspase-9, Drp1, Fis1) and decreased the expression of anti-apoptotic and mitochondrial fusion factors (Bcl-2, Opa1, Mfn1, Mfn2). The expression of SIRT2 significantly increased in a cell model of MPP+-induced Parkinson’s disease, and the inhibition of the SIRT2 was able to decrease apoptosis, promote mitochondrial fusion, inhibit mitochondrial fission and protect neurons.

Key words: Parkinson’s disease model cells    Silent information regulator 2    Apoptosis    Mitochondrial fission and fusion    SiRNA silencing technology
收稿日期: 2020-12-21 出版日期: 2021-04-30
ZTFLH:  Q819  
基金资助: *宁夏重点研发项目资助项目(2019BEB04008)
通讯作者: 李海宁     E-mail: lhnwww@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
段阳阳
张凤亭
成江
石瑾
杨娟
李海宁

引用本文:

段阳阳,张凤亭,成江,石瑾,杨娟,李海宁. SIRT2抑制对MPP+诱导的帕金森病细胞模型凋亡和线粒体动态平衡的影响*[J]. 中国生物工程杂志, 2021, 41(4): 1-8.

DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+. China Biotechnology, 2021, 41(4): 1-8.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2012040        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I4/1

图1  不同浓度MPP+处理后HT-22细胞存活率
图2  不同浓度MPP+处理的HT-22细胞SIRT2表达
图3  不同浓度MPP+处理的HT-22细胞凋亡相关蛋白的表达
图4  HT-22细胞转染SIRT2-siRNA后SIRT2蛋白的表达
图5  SIRT2抑制后HT-22细胞形态恢复
图6  SIRT2抑制后凋亡相关蛋白的表达
图7  SIRT2沉默后线粒体分裂蛋白的表达
图8  SIRT2沉默后线粒体融合蛋白的表达
[1] McDonald C, Gordon G, Hand A, et al. 200 Years of Parkinson’s disease: what have we learnt from James Parkinson? Age and Ageing, 2018,47(2):209-214.
doi: 10.1093/ageing/afx196 pmid: 29315364
[2] Schneider R B, Iourinets J, Richard I H. Parkinson’s disease psychosis: presentation, diagnosis and management. Neurodegenerative Disease Management, 2017,7(6):365-376.
doi: 10.2217/nmt-2017-0028 pmid: 29160144
[3] Guarente L. Introduction: sirtuins in aging and diseases. Methods in Molecular Biology, 2013,1077:3-10.
pmid: 24014396
[4] Sampaio-Marques B, Felgueiras C, Silva A, et al. SNCA (α-synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2 (Sir2)-mediated mitophagy. Autophagy, 2012,8(10):1494-1509.
pmid: 22914317
[5] De Oliveira R M, Vicente Miranda H, Francelle L, et al. The mechanism of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biology, 2017,15(4):e1002601.
doi: 10.1371/journal.pbio.1002601 pmid: 28379951
[6] Wang Y, Cai Y J, Huang H L, et al. miR-486-3p influences the neurotoxicity of a-synuclein by targeting the SIRT2 gene and the polymorphisms at target sites contributing to Parkinson’s disease. Cellular Physiology and Biochemistry, 2018,51(6):2732-2745.
doi: 10.1159/000495963 pmid: 30562735
[7] Singh P, Hanson P S, Morris C M. Sirtuin-2 protects neural cells from oxidative stress and is elevated in neurodegeneration. Parkinson’s Disease, 2017,2017:2643587.
[8] Lin K J, Lin K L, Chen S D, et al. The overcrowded crossroads: mitochondria, alpha-synuclein, and the endo-lysosomal system interaction in Parkinson’s disease. International Journal of Molecular Sciences, 2019,20(21):5312.
[9] Nguyen M, Wong Y C, Ysselstein D, et al. Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends in Neurosciences, 2019,42(2):140-149.
pmid: 30509690
[10] Xu D J, Wu L, Jiang X H, et al. SIRT2 inhibition results in meiotic arrest, mitochondrial dysfunction, and disturbance of redox homeostasis during bovine oocyte maturation. International Journal of Molecular Sciences, 2019,20(6):1365.
[11] Brettschneider J, del Tredici K, Lee V M, et al. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nature Reviews Neuroscience, 2015,16(2):109-120.
doi: 10.1038/nrn3887 pmid: 25588378
[12] Esteves A R, Arduino D M, Silva D F, et al. Mitochondrial metabolism regulates microtubule acetylome and autophagy trough sirtuin-2: impact for Parkinson’s disease. Molecular Neurobiology, 2018,55(2):1440-1462.
[13] Silva D F, Esteves A R, Oliveira C R, et al. Mitochondrial metabolism power SIRT2-dependent deficient traffic causing Alzheimer’s-disease related pathology. Molecular Neurobiology, 2017,54(6):4021-4040.
doi: 10.1007/s12035-016-9951-x pmid: 27311773
[14] Wang Y Z, Li S Y, Liu M G, et al. Rhodosporidium toruloides sir2-like genes remodelled the mitochondrial network to improve the phenotypes of ageing cells. Free Radical Biology and Medicine, 2019,134:64-75.
doi: 10.1016/j.freeradbiomed.2018.12.036 pmid: 30599259
[15] Ramalingam M, Huh Y J, Lee Y I. The impairments of α-synuclein and mechanistic target of rapamycin in rotenone-induced SH-SY5Y cells and mice model of Parkinson’s disease. Frontiers in Neuroscience, 2019,13:1028.
doi: 10.3389/fnins.2019.01028 pmid: 31611767
[16] Chen X Q, Wales P, Quinti L, et al. The sirtuin-2 inhibitor AK7 is neuroprotective in models of Parkinson’s disease but not amyotrophic lateral sclerosis and cerebral ischemia. PLoS One, 2015,10(1):e0116919.
doi: 10.1371/journal.pone.0116919 pmid: 25608039
[17] Xi Y, Feng D Y, Tao K, et al. MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1α. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2018,1864(9):2859-2870.
[18] Peng K G, Yang L K, Wang J, et al. The interaction of mitochondrial biogenesis and fission/fusion mediated by PGC-1α regulates rotenone-induced dopaminergic neurotoxicity. Molecular Neurobiology, 2017,54(5):3783-3797.
doi: 10.1007/s12035-016-9944-9 pmid: 27271125
[19] Liu G X, Park S H, Imbesi M, et al. Loss of NAD-dependent protein deacetylase sirtuin-2 alters mitochondrial protein acetylation and dysregulates mitophagy. Antioxidants & Redox Signaling, 2017,26(15):849-863.
pmid: 27460777
[20] Rani L, Mondal A C. Emerging concepts of mitochondrial dysfunction in Parkinson’s disease progression: Pathogenic and therapeutic implications. Mitochondrion, 2020,50:25-34.
[21] Inoue N, Ogura S, Kasai A, et al. Knockdown of the mitochondria-localized protein p13 protects against experimental parkinsonism. EMBO Reports, 2018,19(3):e44860.
doi: 10.15252/embr.201744860 pmid: 29371327
[1] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[2] 郭利成,曹雪玮,傅龙云,王富军,赵健. 一种用于药物蛋白亲和纯化和跨膜转运的双功能标签的开发 *[J]. 中国生物工程杂志, 2020, 40(6): 40-52.
[3] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[4] 刘叶,潘玥,郑魏,胡晶. miR-186-5p在酒精诱导的心肌细胞中高表达并通过靶基因XIAP调控细胞凋亡水平 *[J]. 中国生物工程杂志, 2019, 39(5): 53-62.
[5] 汪路,杨丽媛,唐雨婷,陶瑶,雷力,敬一佩,蒋雪坷,张伶. 干扰PKM2对人白血病细胞增殖和凋亡的影响及潜在机制 *[J]. 中国生物工程杂志, 2019, 39(3): 13-20.
[6] 黄翔,杨杰,何佩彦,吴志慧,曾慧兰,王新宁,蒋建伟. 白花地胆草单体EM-12诱导2774-C10细胞G1/S期阻滞及细胞凋亡的分子机制研究[J]. 中国生物工程杂志, 2018, 38(4): 17-23.
[7] 代立婷, 吴忠南, 黄翔, 杨杰, 曾慧兰, 王国才, 蒋建伟. 卤地菊乙醇提取物W40单体诱导GLC-82细胞凋亡的分子机制研究[J]. 中国生物工程杂志, 2017, 37(8): 1-7.
[8] 徐安健, 李艳萌, 李斯文, 乌姗娜, 张蓓, 黄坚. PHP14沉默对肺癌细胞凋亡的影响及其机制[J]. 中国生物工程杂志, 2017, 37(7): 12-17.
[9] 李艳伟, 马义, 韩磊, 肖兴, 党诗莹, 文涛, 王得华, 范志勇. Fas凋亡抑制分子FAIM 1表达缺失诱发单纯性肥胖的初步研究[J]. 中国生物工程杂志, 2017, 37(6): 37-42.
[10] 白欣艳, 温丽敏, 王玉晶, 王海龙, 解军, 郭睿. ANKRD49通过上调Bcl-xL的表达抑制UV诱导GC-1细胞的凋亡[J]. 中国生物工程杂志, 2017, 37(4): 40-47.
[11] 冀君, 朱晨晨, 许鑫, 刘晓, 冷超粮, 史鸿飞, 姚伦广, 阚云超. 鸡贫血病毒凋亡素基因的可溶性融合表达及抗肿瘤活性分析[J]. 中国生物工程杂志, 2017, 37(2): 26-32.
[12] 李振华, 李翠平, 张相强, 代立婷, 唐梦思, 王国才, 蒋建伟, 曹明溶. EM-3通过Stat3通路诱导鼻咽癌细胞凋亡和G2/M期阻滞并降低SP细胞比例[J]. 中国生物工程杂志, 2016, 36(3): 1-10.
[13] 万春红, 张志, 李圣纳, 彭以元, 许亮国. TRAF7的研究进展[J]. 中国生物工程杂志, 2016, 36(3): 93-101.
[14] 张英敏, 赵娜, 李勇芳, 孟凡秀, 张琪, 高然朋, 张悦红, 于保锋, 郭睿, 王海龙, 解军, 徐钧. PBI-SUR-TK载体靶向介导HSV-TK自杀基因诱导肝癌细胞凋亡[J]. 中国生物工程杂志, 2016, 36(2): 16-21.
[15] 陈娜子, 姜潮, 李校堃. 内质网应激与疾病[J]. 中国生物工程杂志, 2016, 36(1): 76-85.