Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (1-2): 92-101    DOI: 10.13523/j.cb.1905003
研究报告     
SENP1启动子G-四链体鉴定及其作用研究 *
周炎鑫,韩梦,刘娜女,黄伟伟()
西北农林科技大学生命科学学院 杨陵 712100
Identification and Functional Study of G-quadruplexes in SENP1 Promoter
ZHOU Yan-xing,HAN Meng,LIU Na-nv,HUANG Wei-wei()
College of Life Science, Northwest A & F University, Yangling 712100, China
 全文: PDF(911 KB)   HTML
摘要:

目的:研究G-四链体(G4)对SUMO特异性蛋白酶1(SUMO-specific proteases 1, SENP1)基因的转录调控作用。方法:克隆不同的SENP1启动子片段构建SENP1启动子报告质粒,通过报告基因检测鉴定SENP1启动子核心转录调控区;分析SENP1启动子核心转录调控区序列,并进行G4形成序列预测;合成G4形成序列寡核苷酸,利用圆二色谱分析检测G4形成序列寡核苷酸的拓扑结构;通过G4配体TMPyP4处理和过表达G4解旋酶G4R1结合报告基因检测和Western blot鉴定启动子G4对 SENP1转录表达的调控作用。结果:发现-910 ~+226区域是SENP1启动子的核心转录调控区,序列富含G/C;生信分析发现SENP1启动子核心区存在G4形成序列;圆二色谱分析证实SENP1启动子G4形成序列能够形成G4结构;报告基因检测和Western blot检测发现启动子G4对SENP1转录表达具有抑制作用。结论:SENP1启动子核心转录调控区存在G4结构并对其转录表达具有抑制作用,为揭示SENP1在生理和病理过程中的作用机制提供新的研究思路和试验线索。

关键词: SENP1G-四链体TMPyP4G4R1    
Abstract:

Objective: The regulation effect of G-quadruplexes (G4) on the SUMO-specific proteases 1 (SENP1) transcriptional expression was studied. Method: Reporting plasmids of SENP1 promoter were constructed by cloning different SENP1 promoter fragments. The core transcriptional regulatory region of SENP1 promoter was identified by using reporter assay. The sequence of core transcriptional regulatory region of SENP1 promoter was analyzed and G-quadruplex (G4) formation sequence was predicted. Oligonucleotides of G4 formation sequence from SENP1 promoter were synthesized, and their topological structure was detected by circular dichroism analysis. G4 ligand TMPyP4 and G4 helicase G4R1 were used to detect the regulatory effect of promoter G4 on SENP1 transcriptional expression by using reporter assay and Western blot. Result: The -910~+226 region was found to be the core transcriptional regulatory region of SENP1 promoter. Sequence analysis showed the core region of SENP1 promoter is rich in G/C and contains G4 formation sequences. Circular dichroism analysis confirmed that the oligonucleotides of G4 formation sequence from SENP1 promoter form G4 structure. Reporter assay and Western blot showed that promoter G4 inhibited the transcriptional expression of SENP1. Conclusion: G4 exist in the core transcriptional regulatory region of SENP1 promoter and show negative regulation on SENP1 transcriptional expression, which provides new research ideas and experimental clues for revealing the mechanism of SENP1 in physiological and pathological processes.

Key words: SENP1    G-quadruplexe    TMPyP4    G4R1
收稿日期: 2019-05-05 出版日期: 2020-03-27
ZTFLH:  Q291  
基金资助: * 国家自然科学基金(31300654);陕西省自然科学基金(2014JQ3098)
通讯作者: 黄伟伟     E-mail: whuang0210@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周炎鑫
韩梦
刘娜女
黄伟伟

引用本文:

周炎鑫,韩梦,刘娜女,黄伟伟. SENP1启动子G-四链体鉴定及其作用研究 *[J]. 中国生物工程杂志, 2020, 40(1-2): 92-101.

ZHOU Yan-xing,HAN Meng,LIU Na-nv,HUANG Wei-wei. Identification and Functional Study of G-quadruplexes in SENP1 Promoter. China Biotechnology, 2020, 40(1-2): 92-101.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1905003        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I1-2/92

Gene Forward Primer(5'→3') Reverse Primer(5'→3')
SENP1 F1: CCGGAATTCACAATTTCCCAGATGATCCATCC R1: CGCGGATCCCAATGTTAGCTTTATCCAGG ACC
F2: CCGGAATTCTTCTACATCTTGCCAGAGTCTAG R2: CGCGGATCCATGCAAGTCAACAACTGCATTCC
R3: CGCGGATCCCGAGCTTCCCGGTGAAAACA
G4R1 CGCGGATCCATGAGTTATGACTACCATCAGAACTGG CCGCTCGAGTCAGCTGTAATATCCATCCTGGAA
表1  PCR引物序列
图1  SENP1启动子报告质粒及萤光素酶报告基因检测
图2  SENP1启动子序列分析和G4形成序列预测
图3  SENP1启动子G4形成序列及圆二色谱分析
图4  G4配体TMPyP4对SENP1表达的影响
图5  G4解旋酶G4R1对SENP1表达的影响
[1] Eifler K, Vertegaal A C O . SUMOylation-mediated regulation of cell cycle progression and cancer. Trends Biochem Sci, 2015,40(12):779-793.
[2] Yang Y, He Y, Wang X , et al. Protein SUMOylation modification and its associations with disease. Open Biol, 2017,7(10):170167.
[3] Mukhopadhyay D, Dasso M . Modification in reverse: the SUMO proteases. Trends Biochem Sci, 2007,32(6):286-295.
[4] Cheng J, Kang X, Zhang S , et al. SUMO-specific protease 1 is essential for stabilization of HIF1α during hypoxia. Cell, 2007,131(3):584-595.
[5] Yamaguchi T, Sharma P, Athanasiou M , et al. Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development. Mol Cell Biol, 2005,25(12):5171-5182.
[6] Yu L, Ji W, Zhang H , et al. SENP1-mediated GATA1 deSUMOylation is critical for definitive erythropoiesis. J Exp Med, 2010,207(6):1183-1195.
[7] Xia N, Cai J, Wang F , et al. SENP1 is a crucial regulator for cell senescence through deSUMOylation of Bmi1. Sci Rep, 2016,6:34099.
[8] Xu Y, Zuo Y, Zhang H , et al. Induction of SENP1 in endothelial cells contributes to hypoxia-driven VEGF expression and angiogenesis. J Biol Chem, 2010,285(47):36682-36688.
[9] Cai R, Yu T, Huang C , et al. SUMO-specific protease 1 regulates mitochondrial biogenesis through PGC-1α. J Biol Chem, 2012,287(53):44464-44470.
[10] Wang Q, Xia N, Li T , et al., SUMO-specific protease 1promotes prostate cancer progression and metastasis. Oncogene, 2013,32(19):2493-2498.
[11] Zhang W, Sun H, Shi X , et al. SENP1 regulates hepatocyte growth factor-induced migration and epithelial-mesenchymal transition of hepatocellular carcinom. Tumour Biol, 2016,37(6):7741-7748.
[12] Mu J, Zuo Y, Yang W , et al. Over-expression of small ubiquitin-like modifier proteases 1 predicts chemo-sensitivity and poor survival in non-small cell lung cancer. Chin Med J (Engl), 2014,127(23):4060-4065.
[13] Wang X, Liang X, Liang H , et al. SENP1/HIF-1α feedback loop modulates hypoxia-induced cell proliferation, invasion, and EMT in human osteosarcoma cells. J Cell Biochem, 2018,119(2):1819-1826.
[14] Wang Z, Jin J, Zhang J , et al. Depletion of SENP1 suppresses the proliferation and invasion of triple-negative breast cancer cells. Oncol Rep, 2016,36(4):2071-2078.
[15] Dong B, Gao Y, Kang X , et al. SENP1 promotes proliferation of clear cell renal cell carcinoma through activation of glycolysis. Oncotarget, 2016,7(49):80435-80449.
[16] Bawa-Khalfe T, Cheng J, Wang Z , et al. Induction of the SUMO-specific protease 1 transcription by the androgen receptor in prostate cancer cells. J Biol Chem, 2007,282(52):37341-37349.
[17] Wang C, Tao W, Ni S , et al. Tumor-suppressive microRNA-145 induces growth arrest by targeting SENP1 in human prostate cancer cells. Cancer Sci, 2015,106(4):375-382.
[18] Chen S Y, Teng S C, Cheng T H , et al. miR-1236 regulates hypoxia-induced epithelial-mesenchymal transition and cell migration/invasion through repressing SENP1 and HDAC3. Cancer Lett, 2016,378(1):59-67.
[19] Zhou G Q, Han F, Shi Z L , et al. miR-133a-3p targets SUMO-specific protease 1 to inhibit cell proliferation and cell cycle progress in colorectal cancer. Oncol Res, 2018,26(5):795-800.
[20] Rhodes D, Lipps H J . G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res, 2015,43(18):8627-8637.
[21] Huppert J L, Balasubramanian S . Prevalence of quadruplexes in the human genome. Nucleic Acids Res, 2005,33(9):2908-2916.
[22] Kwok C K, Merrick C J . G-Quadruplexes: prediction, characterization, and biological application. Trends Biotechnol, 2017,35(10):997-1013.
[23] Schaffitzel C, Berger I, Postberg J , et al. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci USA, 2001,98:8572-8577.
[24] Maizels N, Gray L T . The G4 genome. PLoS Genet, 2013,9(4):e1003468.
[25] Siddiqui-Jain A, Grand C L, Bearss D J , et al. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA, 2002,99(18):11593-11598.
[26] Dai J, Dexheimer T S, Chen D , et al. An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. J Am Chem Soc, 2006,128(4):1096-1098.
[27] Cogoi S, Xodo L E . G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res, 2006,34(9):2536-2549.
[28] Neidle S, Parkinson G . Telomere maintenance as a target for anticancer drug discovery. Nat Rev Drug Discov, 2002,1(5):383-393.
[29] Bugaut A, Balasubramanian S . 5'-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res, 2012,40(11):4727-4741.
[30] Lee J Y, Yoon J, Kihm H W , et al. Structural diversity and extreme stability of unimolecular Oxytricha nova telomeric G-quadruplex. Biochemistry, 2008,47(11):3389-3396.
[31] Asamitsu S, Obata S, Yu Z , et al. Recent progress of targeted G-Quadruplex-preferred ligands toward cancer therapy. Molecules, 2019,24(3):E429.
[32] Mendoza O, Bourdoncle A, Boule J B , et al. G-quadruplexes and helicases. Nucleic Acids Res, 2016,44(5):1989-2006.
[33] Chen MC, Murat P, Abecassis K , et al. Insights into the mechanism of a G-quadruplex-unwinding DEAH-box helicase. Nucleic Acids Res, 2015,43(4):2223-2231.
[34] Paramasivan S, Rujan I, Bolton P H . Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding. Methods, 2007,43(2):324-331.
[35] Huang W, Smaldino P J, Zhang Q , et al. Yin Yang 1 contains G-quadruplex structures in its promoter and 5'-UTR and its expression is modulated by G4 resolvase 1. Nucleic Acids Res, 2012,40(3):1033-1049.
[36] Renciuk D, Rynes J, Kejnovska I , et al. G-quadruplex formation in the Oct4 promoter positively regulates Oct4 expression. Biochim. Biophys. Acta, 2017,1860(2):175-183.
[37] Grand C L, Han H, Munoz R M , et al. The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol Cancer Ther, 2002,1(8):565-573.
[1] 贾振伟. SIRT1功能及其对卵泡发育和卵母细胞成熟的调控作用 *[J]. 中国生物工程杂志, 2020, 40(10): 51-56.
[2] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[3] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[4] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[5] 周勤,王爽,张婷,李善刚,陈永昌. 小鼠及猕猴胚胎MECP2基因T158M单碱基突变体系的建立 *[J]. 中国生物工程杂志, 2020, 40(6): 31-39.
[6] 张莹,孔祥熙,侯琳,王树坤,袁增强. Ozanimod(RPC1063)在少突胶质前体细胞分化中的作用和机制 *[J]. 中国生物工程杂志, 2020, 40(6): 10-19.
[7] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[8] 唐敏,万群,孙恃雷,胡静,孙子久,方玉婷,张彦. Hsa-miR-5195-3p对人宫颈癌细胞SiHa增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2020, 40(4): 17-24.
[9] 李彤彤,宋彩玲,杨凯越,王文静,陈慧宇,刘明. 抗犬细小病毒VP2蛋白单链抗体的制备与中和活性研究 *[J]. 中国生物工程杂志, 2020, 40(4): 10-16.
[10] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[11] 张艳婷,郭玉峰,杨芝红,杨少奇. CD177 +中性粒细胞在溃疡性结肠炎患者外周血中的表达及临床意义[J]. 中国生物工程杂志, 2019, 39(9): 58-61.
[12] 冉隆荣,薛宁,王建容,杜英剑,毛金菊,周泉佑,杨再林. 恶性血液病患者外周血淋巴细胞亚群变化及其临床意义的研究[J]. 中国生物工程杂志, 2019, 39(9): 50-57.
[13] 袁晓英,王亚哲,石韦华,常艳,郝乐,贺玲玲,石红霞,黄晓军,刘艳荣. 流式检测PNH克隆的方法学探讨及临床筛检和意义 *[J]. 中国生物工程杂志, 2019, 39(9): 33-40.
[14] 贺玲玲,骆婷婷,常艳,王亚哲,袁晓英,石韦华,赖悦云,石红霞,秦亚溱,黄晓军,刘艳荣. 28例急性巨核细胞白血病实验室检查结果分析 *[J]. 中国生物工程杂志, 2019, 39(9): 2-10.
[15] 高福兰,齐家龙,舒聪妍,谢航航,黄惟巍,刘存宝,杨旭,孙文佳,白红妹,马雁冰. 序列优化的小鼠IL-33基因在哺乳动物细胞中的有效分泌表达[J]. 中国生物工程杂志, 2019, 39(3): 46-55.