Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (2): 18-29    DOI: 10.13523/j.cb.20180204
研究报告     
中间锦鸡儿CCR2CCR3基因的克隆和功能鉴定 *
刘坤,崔爽,杨飞芸,韩晓东,王瑞刚,张子义()
内蒙古农业大学生命科学学院 呼和浩特 010018
Clone and Functional Identification of Cinnamoyl CoA Reductase Genes from Caragana intermedia
Kun LIU,Shuang CUI,Fei-yun YANG,Xiao-dong HAN,Rui-gang WANG,Zi-yi ZHANG()
College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
 全文: PDF(3010 KB)   HTML
摘要:

肉桂酰辅酶A还原酶(cinnamoyl-CoA reductase, CCR)是催化木质素合成特异途径的第一个限速酶,对木质素的合成起关键作用。从中间锦鸡儿中克隆了两个CCR基因,CiCCR2CiCCR3,其中CiCCR2基因开放阅读框为897bp,编码299个氨基酸,CiCCR3基因开放阅读框为966bp,编码322个氨基酸。过表达CiCCR2CiCCR3转基因拟南芥株系幼苗期和成熟期木质素含量均高于野生型,组织化学染色也表明转基因株系木质素积累较野生型拟南芥多,且转基因株系鲜重和干重显著高于野生型。

关键词: 肉桂酰辅酶A还原酶克隆木质素中间锦鸡儿    
Abstract:

Cinnamoyl-CoA reductaseis the first rate limiting emzyme which catalyzes the biosynthesis of lignin and plays an important role in lignin biosynthesis. Two cinnamoyl-CoA reductase encoding genes, CiCCR2 and CiCCR3, were cloned from Caragana intermedia through PCR. The open reading frame(ORF) of CiCCR2 is 897bp which encoding 299 amino acids, and ORF of CiCCR3 is 966bp, which encoding 322 amino acids. Quantification assay and Histochemical staining showed that the lignin content increased by overexpressing of CiCCR2 and CiCCR3 in Arabidopsis compared with the wild type during both seedling and mature stages. At the same time, the fresh and dry weight of overexpressing plants were higher than that of the wild type.

Key words: Cinnamoyl-CoA reductase    Clone    Lignin    Caragana intermedia
收稿日期: 2017-09-19 出版日期: 2018-03-21
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(31360169);内蒙古自治区科技创新团队资助项目(3201503004)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘坤
崔爽
杨飞芸
韩晓东
王瑞刚
张子义

引用本文:

刘坤,崔爽,杨飞芸,韩晓东,王瑞刚,张子义. 中间锦鸡儿CCR2CCR3基因的克隆和功能鉴定 *[J]. 中国生物工程杂志, 2018, 38(2): 18-29.

Kun LIU,Shuang CUI,Fei-yun YANG,Xiao-dong HAN,Rui-gang WANG,Zi-yi ZHANG. Clone and Functional Identification of Cinnamoyl CoA Reductase Genes from Caragana intermedia. China Biotechnology, 2018, 38(2): 18-29.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180204        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I2/18

引物名称 Primer name 引物序列Primer sequence (5'→3')
F-CiCCR2-oe GTCGAC(Sal I)ATGGCACCTTCTTTCGACAT
R-CiCCR2-oe GAGCTC(Sac I)GAACAGCTAAGGTTATTGCCC
F-CiCCR3-oe GTCGAC(Sal I)ATGGCAACAAGTGGGGAAGG
R-CiCCR3-oe ACTAGT(Spe I)AACATTGGCAAGTCCAGTCTGTG
F-CiCCR2-q CTGTCGCAAATTCAAGTTATGGC
R-CiCCR2-q CAGCAGCTCCTCTCAAGTAAGGGT
F-CiCCR3-q AAACACAGGCCACTGGAGGAA
R-CiCCR3-q TGACATTTATTTTGAATCGAAGAGACC
qCiEF1αF TGGGTGGGACATTCTCTGATT
qCiEF1αR GCACGGTTCACTTCTTCTTAGC
qAtEF1αF AGAAGGGTGCCAAATGATGAG
qAtEF1αR GGAGGGAGAGAGAAAGTCACAGA
表1  本实验所用引物
图1  CiCCR2和CiCCR3基因cDNA扩增结果
图2  CiCCR2和CiCCR3与其它物种CCR蛋白多重序列比对
图3  CiCCR2和CiCCR3与其他物种CCR的系统进化分析
图4  qRT-PCR检测中间锦鸡儿CiCCR2和CiCCR3不同组织部位表达水平
图5  CiCCR2和CiCCR3过表达载体双酶切鉴定
  
图6  实时荧光定量PCR检测过表达株系CiCCR2和CiCCR3的表达水平
图7  CiCCR2 和CiCCR3转基因株系和野生型拟南芥重量
图8  木质素含量标准曲线
图9  CiCCR2 和CiCCR3转基因株系和野生型拟南芥木质素含量
图10  CiCCR2转基因株系和野生型拟南芥组织化学染色
图11  CiCCR3转基因株系和野生型拟南芥组织化学染色
[1] Ghosh R, Choi B, Cho B K , et al. Characterization of developmental- and stress-mediated expression of cinnamoyl-CoA reductase in kenaf (Hibiscus cannabinus L.). The Scientific World Journal, 2014,2014:601845.
doi: 10.1155/2014/601845 pmid: 24723816
[2] Boerjan W, Ralph J, Baucher M . Lignin biosynthesis. Annual Review of Plant Biology, 2003,54(1):519-546.
doi: 10.1146/annurev.arplant.54.031902.134938
[3] 李伟, 熊谨, 陈晓阳 . 木质素代谢的生理意义及其遗传控制研究进展. 西北植物学报, 2003,23(4):675-681.
doi: 10.3321/j.issn:1000-4025.2003.04.032
Li W, Xiong J, Chen X Y . Advances in the research of physiological significances and genetic regulation of lignin metabolism. Acta Botanica Boreali-Occidentalia Sinica, 2003,23(4):675-681.
doi: 10.3321/j.issn:1000-4025.2003.04.032
[4] Bhuiyan N H, Selvaraj G, Wei Y , et al. Role of lignification in plant defense. Plant Signaling & Behavior, 2009,4(2):158.
[5] Weng J K, Chapple C . The origin and evolution of lignin biosynthesis. New Phytologist, 2010,187(2):273-285.
doi: 10.1111/j.1469-8137.2010.03327.x pmid: 20642725
[6] Zhong R, Morrison W H, Himmelsbach D S , et al. Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar pants. Plant Physiology, 2000,124(2):563-578.
doi: 10.1104/pp.124.2.563
[7] Ragauskas A J, Beckham G T, Biddy M J , et al. Lignin valorization: improving lignin processing in the biorefinery. Science, 2014,344(6185):1246843.
doi: 10.1126/science.1246843 pmid: 24833396
[8] Tang W, Tang A Y . Transgenic woody plants for biofuel. Journal of Forestry Research, 2014,( 2):225-236.
doi: 10.1007/s11676-014-0454-1
[9] Van D J . Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant Journal for Cell & Molecular Biology, 1997,11(3):429-441.
[10] Weia L I, Tan X F, Chen H P . Structure,function and application potential of cinnamoyl-CoA reductase(CCR) gene in plant. Nonwood Forest Research, 2009,27(1):7-12.
[11] Mansell R L, St?ckigt J, Zenk M H . Reduction of ferulic acid to coniferyl alcohol in a cell free system from a higher plant. Zeitschrift Für Pflanzenphysiologie, 1972,68(3):286-288.
doi: 10.1016/S0044-328X(72)80063-1
[12] Kawasaki T, Koita H, Nakatsubo T , et al. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(1):230-235.
doi: 10.1073/pnas.0509875103 pmid: 16380417
[13] Lauvergeat V, Lacomme C, Lacombe E , et al. Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry, 2001,57(7):1187-1195.
doi: 10.1016/S0031-9422(01)00053-X
[14] Zhou R, Jackson L, Shadle G , et al. Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(41):17803-17808.
doi: 10.1073/pnas.1012900107 pmid: 20876124
[15] Mir Derikvand M, Sierra J B, Ruel K , et al. Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1. Planta, 2008,227(5):943-956.
doi: 10.1007/s00425-007-0669-x
[16] Piquemal J, Lapierre C, Myton K , et al. Down-regulation of Cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant Journal, 1998,13(1):71-83.
doi: 10.1046/j.1365-313X.1998.00014.x
[17] Dauwe R, Morreel K, Goeminne G , et al. Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant Journal, 2007,52(2):263-285.
doi: 10.1111/j.1365-313X.2007.03233.x pmid: 17727617
[18] Leplé J C, Dauwe R, Morreel K , et al. Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. The Plant Cell, 2007,19(11):3669-3691.
doi: 10.1105/tpc.107.054148 pmid: 18024569
[19] Jones L, Ennos A R, Turner S R . Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. The Plant Journal: for Cell and Molecular Biology, 2001,26(2):205-216.
doi: 10.1046/j.1365-313x.2001.01021.x
[20] Laskar D D, Jourdes M, Patten A M , et al. The Arabidopsis cinnamoyl CoA reductase irx4 mutant has a delayed but coherent (normal) program of lignification. The Plant journal : for Cell and Molecular Biology, 2006,48(5):674-686.
doi: 10.1111/j.1365-313X.2006.02918.x pmid: 17092316
[21] Patten A M, Cardenas C L, Cochrane F C , et al. Reassessment of effects on lignification and vascular development in the irx4 Arabidopsis mutant. Phytochemistry, 2005,66(17):2092-2107.
doi: 10.1016/j.phytochem.2004.12.016 pmid: 16153410
[22] Han X, Feng Z, Xing D , et al. Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis. BMC Plant Biology, 2015,15(1):208.
doi: 10.1186/s12870-015-0591-5 pmid: 4546137
[23] 路静, 杨万政, 王捷 , 等. 蒙药锦鸡儿的研究进展. 中国民族医药杂志, 2010,16(4):56-59.
Lu J, Yang W Z, Wang J , et al. The progress of chemistry and pharmacology of Caragana. Journal of Medicine & Pharmacy of Chinese Minorities, 2010,16(4):56-59.
[24] 杨杞, 张涛, 王颖 , 等. 干旱胁迫下柠条锦鸡儿叶片SSH文库构建及CkWRKY1基因克隆. 林业科学, 2013,49(7):62-68.
doi: 10.11707/j.1001-7488.20130709
Yang Q, Zhang T, Wang Y , et al. Construction of a suppression subtractive hybridization library of Caragana korshinskii under drought stress and cloning of CkWRKY1 gene. Scientia Silvae Sinicae, 2013,49(7):62-68.
doi: 10.11707/j.1001-7488.20130709
[25] 韩晓敏 . 中间锦鸡儿3个非生物胁迫相关转录因子的克隆与功能分析. 呼和浩特:内蒙古农业大学, 生命科学学院, 2015.
Han X M . The cloning and analysis of three stress-related transcription factors from Caragana intermedia,Hohhot:Inner Mongolia Agriculture University, College of Life Sciences, 2015.
[26] 魏丽丽 . 过表达柠条锦鸡儿CkDREB1基因的拟南芥抗旱和抗冷的机理分析. 呼和浩特:内蒙古农业大学, 生命科学学院, 2013.
Wei L L . Mechanism analysis of cold and drought tolerance of the transgenic Arabidopsis overexpressing DREB1 from Caragana korshinskii kom. Hohhot: Inner Mongolia Agricultural University, College of Life Sciences, 2013.
[27] Carugo O, Argos P . NADP-dependent enzymes. I: Conserved stereochemistry of cofactor binding. Proteins-structure Function & Bioinformatics, 1997,28(1):10-28.
[28] Filling C, Berndt K D, Benach J , et al. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. Journal of Biological Chemistry, 2002,277(28):25677-25684.
doi: 10.1074/jbc.M202160200 pmid: 11976334
[29] Pan H, Zhou R, Louie G V , et al. Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis. Plant Cell, 2014,26(9):3709-3727.
doi: 10.1105/tpc.114.127399 pmid: 25217505
[30] 刘晓晶, 崔浪军, 夏飞 , 等. 拟南芥肉桂酰辅酶A还原酶(AtCCR1/2)基因的生物信息学分析. 陕西师范大学学报(自然科学版), 2011,39(3):67-72.
Liu X J, Cui L J, Xia F , et al. Bioinformatic analysis of cinnamoyl CoA reductase(AtCCR1/2)gene from Arabidopsis thaliana. Journal of Shaanxi Normal University (Natural Science Edition), 2011,39(3):67-72.
[31] 唐映红 . 苎麻木质素合成关键酶4CL和CCR基因cDNA序列的克隆与表达分析. 长沙:湖南农业大学, 2015.
Tang Y H . The cDNA cloning and expression analysis of key enzyme 4CL and CCR gene in ligninsynthesis pathway of Boehmeria nivea. Changsha: Hunan Agricultural University, 2015.
[32] Pichon M, Courbou I, Beckert M , et al. Cloning and characterization of two maize cDNAs encoding cinnamoyl-CoA reductase (CCR) and differential expression of the corresponding genes. Plant Molecular Biology, 1998,38(4):671-676.
doi: 10.1023/A:1006060101866 pmid: 9747812
[33] Lacombe E, Hawkins S, Van Doorsselaere J , et al. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. The Plant Journal : for Cell and Molecular Biology, 1997,11(3):429-441.
doi: 10.1046/j.1365-313X.1997.11030429.x
[34] Raes J, Rohde A, Christensen J H , et al. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiology, 2003,133(8):1051.
doi: 10.1104/pp.103.026484 pmid: 14612585
[35] Hu Y, Di P, Chen J , et al. Isolation and characterization of a gene encoding cinnamoyl-CoA reductase from Isatis indigotica Fort. Molecular Biology Reports, 2011,38(3):2075-2083.
doi: 10.1007/s11033-010-0333-6 pmid: 20859691
[36] Cheng H , Characterization of a cinnamoyl-CoA reductase gene in Ginkgo biloba: Effects on lignification and environmental stresses. African Journal of Biotechnology, 2012,11(26):6780-6794.
doi: 10.5897/AJB11.3704
[37] Koutaniemi S, Warinowski T, K?rk?nen A , et al. Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Molecular Biology, 2007,65(3):311-328.
doi: 10.1007/s11103-007-9220-5 pmid: 17764001
[38] Barakat A, Yassin N B, Park J S , et al. Comparative and phylogenomic analyses of cinnamoyl-CoA reductase and cinnamoyl-CoA-reductase-like gene family in land plants. Plant Science, 2011,181(3):249-257.
doi: 10.1016/j.plantsci.2011.05.012 pmid: 21763535
[39] Goujon T, Ferret V, Mila I , et al. Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta, 2003,217(2):218-228.
doi: 10.1007/s00425-003-0987-6 pmid: 12783329
[40] Tamasloukht B, Lam W, Martinez Y , et al. Characterization of a cinnamoyl-CoA reductase 1 (CCR1) mutant in maize: effects on lignification, fibre development, and global gene expression. Journal of experimental botany, 2011,62(11):3837-3848.
doi: 10.1093/jxb/err077 pmid: 3134344
[41] Ma Q H . Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. Journal of Experimental Botany, 2007,58(8):2011.
doi: 10.1093/jxb/erm064 pmid: 17452751
[42] Prashant S, Sunita M S, Pramod S , et al. Down-regulation of Leucaena leucocephala cinnamoyl CoA reductase ( LlCCR ) gene induces significant changes in phenotype, soluble phenolic pools and lignin in transgenic tobacco. Plant Cell Reports, 2011,30(12):2215-2231.
doi: 10.1007/s00299-011-1127-6 pmid: 21847621
[43] Zhang W, Wei R, Chen S , et al. Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis. Physiologia Plantarum, 2014,154(2):283.
[1] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[2] 赵妍淑,张金华,宋浩. 工程原核生物和酵母菌中生产单克隆抗体和抗体片段研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 74-83.
[3] 贾晓,邱瑾,舒娟,李华,习书斌,曾溢滔,曾凡一. 血清孕酮水平检测在克隆胚胎移植受体牛的筛选及妊娠诊断中的应用 *[J]. 中国生物工程杂志, 2020, 40(7): 1-8.
[4] 王猛,宋慧茹,程雨洁,王毅,杨波,胡征. 以核糖体蛋白L7/L12为分子标志物精准检测肺炎链球菌的研究 *[J]. 中国生物工程杂志, 2020, 40(4): 34-41.
[5] 陈秋利,杨丽超,李辉,温莎,李刚,何敏. 人Nek2蛋白原核表达纯化及其多克隆抗体制备 *[J]. 中国生物工程杂志, 2020, 40(3): 31-37.
[6] 孔建涛,庄英萍,郭美锦. 基于DOE设计和氨基酸补加策略提高CHO细胞表达抗CD20单克隆抗体*[J]. 中国生物工程杂志, 2020, 40(12): 41-48.
[7] 吝建华,韩君,徐寒梅. PD-1/PD-L1免疫检查点抗体药物制剂稳定性开发[J]. 中国生物工程杂志, 2020, 40(10): 35-42.
[8] 袁晓英,王亚哲,石韦华,常艳,郝乐,贺玲玲,石红霞,黄晓军,刘艳荣. 流式检测PNH克隆的方法学探讨及临床筛检和意义 *[J]. 中国生物工程杂志, 2019, 39(9): 33-40.
[9] 江一帆,贾宇,王龙,王志明. 细胞培养过程对单克隆抗体糖基化修饰的影响和调控[J]. 中国生物工程杂志, 2019, 39(8): 95-103.
[10] 石俊松,罗绿花,周荣,麦然标,纪红美,余婉娴,吴珍芳,蔡更元. 延迟激活对猪克隆胚胎体外、体内发育效率的影响 *[J]. 中国生物工程杂志, 2019, 39(4): 16-23.
[11] 江一帆,董静,魏敬双. 工程细胞单克隆筛选及单克隆源性验证 *[J]. 中国生物工程杂志, 2019, 39(4): 101-105.
[12] 高倩,江洪,叶茂,郭文娟. 全球单克隆抗体药物研发现状及发展趋势 *[J]. 中国生物工程杂志, 2019, 39(3): 111-119.
[13] 杨飞芸,杨天瑞,刘坤,崔爽,王瑞刚,李国婧. 异源表达CiRS基因拟南芥的黄酮代谢及抑菌能力研究 *[J]. 中国生物工程杂志, 2019, 39(11): 22-30.
[14] 刘国芳,刘晓志,高健,王志明. 宿主细胞残留蛋白质对单克隆抗体药物质量影响及其质量控制 *[J]. 中国生物工程杂志, 2019, 39(10): 105-110.
[15] 纪海姣,李文蕾,黄瑞晶,李剑,徐寒梅. 抗CD20抗体高产细胞株的筛选及质量评估[J]. 中国生物工程杂志, 2018, 38(8): 34-40.