Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (10): 35-42    DOI: 10.13523/j.cb.2005048
综述     
PD-1/PD-L1免疫检查点抗体药物制剂稳定性开发
吝建华1,韩君2,*,徐寒梅1,*
1 中国药科大学 南京 211198
2 天士力生物医药股份有限公司 上海 201203
Developing the Stability of PD-1 / PD-L1 Immune Checkpoint Antibody Drug Formulation
LIN Jian-hua1,HAN Jun2,*,Xu Han-mei1,*
1 China Pharmaceutical University, Nanjing 211198, China
2 Tasly Biopharmaceuticals Co., Ltd., Shanghai 201203, China
 全文: PDF(6708 KB)   HTML
摘要:

近年来抗体药物在生物医药领域发展迅速。随着抗体疗法种类的不断增加和PD-1/PD-L1靶点蛋白结构的确证,临床上,越来越多针对PD-1/PD-L1免疫检查点的单克隆抗体药物被不断开发并应用于治疗死亡率高、治愈率低的多种癌症中。但是抗体药物制剂开发水平还需进一步提高,一方面同一靶点的抗体产品同质化严重,另一方面抗体药物的理化性质比小分子药物复杂,因此需要针对不同单克隆抗体的药物特性,筛选出适应于临床应用的稳定蛋白制剂处方。概括了不同抗体药物制剂处方成分(缓冲液成分、药物辅料)的作用,结合PD-1/PD-L1靶点介绍了抗体药物制剂稳定性开发的一般策略以及CDE相关的审评要点。

关键词: 免疫检查点PD-1/PD-L1单克隆抗体药物制剂处方稳定性    
Abstract:

Recently, antibody drugs have developed rapidly in the field of biopharmaceuticals. Clinically, the type and number of monoclonal antibody-based tumor therapies are increasing. With confirmed structure of PD-1/PD-L1 protein,monoclonal antibody drugs against immune checkpoint PD-1/PD-L1 have been continuously developed and applied to the treatment of many principal cancers with high mortality and low cure rate. However, due to the complex physical and chemical properties and serious homogenization, monoclonal antibody drugs are necessary to screen out stable protein preparations for clinical applications based on the characteristics of different monoclonal antibody drugs. This article reviews the role of different antibody drug formulations (buffer components, drug excipients), combined with the PD-L1 target, which introduces the stability development of antibody drug formulations and the main points for evaluation of CDE.

Key words: Immune checkpoint PD-1/PD-L1    mAb    Formulation    Stability
收稿日期: 2020-05-22 出版日期: 2020-11-10
ZTFLH:  R94  
通讯作者: 韩君,徐寒梅   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吝建华
韩君
徐寒梅

引用本文:

吝建华,韩君,徐寒梅. PD-1/PD-L1免疫检查点抗体药物制剂稳定性开发[J]. 中国生物工程杂志, 2020, 40(10): 35-42.

LIN Jian-hua,HAN Jun,Xu Han-mei. Developing the Stability of PD-1 / PD-L1 Immune Checkpoint Antibody Drug Formulation. China Biotechnology, 2020, 40(10): 35-42.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2005048        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I10/35

图1  免疫球蛋白结构和常见抗体类型
类别 影响因素 主要影响方面
制剂工艺 pH 构象稳定性;胶体稳定性
离子强度 构象稳定性;胶体稳定性
辅料 构象稳定性,胶体稳定性;化学降解
包材 构象稳定性;化学降解;聚集/碎片化
生产过程 搅拌 聚集
冻融 聚集
冻干 聚集
表面曝光 聚集;蛋白损失
温度 低温 构象稳定性
高温 化学降解/聚集
光照 可见光/紫外光 化学降解
表1  影响蛋白稳定性的主要因素[20]
序号 商品名 通用名 规格 包装 制剂组成 pH
1 Opdivo(PD-1) Nivolumab 40mg/4ml,
100mg/10ml
西林瓶 每1ml:30mg甘露醇,0.008mg三胺五乙酸,0.2mg聚山梨酯80,2.92mg氯化钠,5.88mg二水枸橼酸钠 6.0
2 Keytruda(PD-1) Pembrolizumab 50mg/瓶
25mg/ml
西林瓶(冻干粉) 3.1mg L-组氨酸,0.4mg聚山梨酯80,140mg蔗糖 5.5
3 Libtayo(PD-1) Cemiplimab 350mg/7ml 西林瓶 每1ml:50mg Cemiplimab,0.74mg L-组氨酸,1.1mg一水合组氨酸盐酸盐,50mg蔗糖,15mg L-脯氨酸,2mg吐温80 6.0
4 Bavencio(PD-L1) Avelumab 200mg/10ml 西林瓶 每1ml:20mg Avelumab,51mg D-甘露醇,0.6mg冰醋酸,0.5mg吐温20,0.3g氯化钠 5.0~5.6
5 Imfinzi(PD-L1) Durvalumab 500mg/10ml
120mg/2.4ml
西林瓶 每1ml:50mg Durvalumab,2mg L-组氨酸,2.7mg一水合组氨酸盐酸盐,104mg二水合海藻糖,0.2mg吐温80 -
6 Tecentriq(PD-L1) Atezolizumab 1 200mg/20ml 西林瓶 每1ml:8mg聚山梨酯20,62mg L-组氨酸,821.6mg蔗糖,16.5mg冰醋酸 5.8
7 拓益(PD-1) 特瑞普利单抗 240mg/6ml 西林瓶 一水合枸橼酸,二水合枸橼酸钠,氯化钠,甘露醇,聚山梨酯80 -
8 达伯舒??(PD-1) 信迪利单抗 100mg/10ml 西林瓶 一水合枸橼酸,二水合枸橼酸钠,氯化钠,甘露醇,组氨酸,依地酸二钠,聚山梨酯80 -
9 艾瑞卡??(PD-1) 卡瑞利珠单抗 200mg/瓶 西林瓶 α,α-二水合海藻糖,冰醋酸,氢氧化钠,聚山梨酯20 -
表2  商品化的PD-1/PD-L1的单克隆抗体制剂汇总表
[1] Ecker D M, Jones S D, Levine H L. The therapeutic monoclonal antibody market. MAbs, 2015,7(1):9-14.
doi: 10.4161/19420862.2015.989042 pmid: 25529996
[2] Nelson A L, Dhimolea E, Reichert J M. Development trends for human monoclonal antibody therapeutics. Nature Reviews Drug Discovery, 2010,9(10):767-774.
doi: 10.1038/nrd3229 pmid: 20811384
[3] Li C, Zhang N, Zhou J, et al. Peptide blocking of PD-1/PD-L1 interaction for cancer immunotherapy. Cancer Immunology Research, 2017,6(2):178-188.
doi: 10.1158/2326-6066.CIR-17-0035 pmid: 29217732
[4] Park Y J, Kuen D S, Chung Y. Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance. Molecular Medicine, 2018,50(8):109.
[5] 赵晨曦, 胡卓伟, 崔冰. 单克隆抗体药物研究进展. 药学学报, 2017,52(06):837-47.
Zhao C X, Hu Z W, Cui B. Recent advances in monoclonal antibody-based therapeutics. Acta Pharmaceutica Sinica, 2017,52(06):837-47.
[6] 邱晓, 罗建辉. 重组单克隆抗体药物制剂处方的作用及相关审评要点. 中国新药杂志. 2019: 1947-1954.
Qiu X, Luo J H. Roles of the components of product formulation of monoclonal antibodies and the points to consider for drug evaluation. Chinese Journal of New Drugs, 2019: 1947-1954.
[7] Janeway C A, Capra J D, Travers P, et al. Immunobiology: the immune system in health and disease. Garland Pub, 1999.
[8] Kennedy P J, Oliveira C, Granja P L, et al. Monoclonal antibodies: technologies for early discovery and engineering. Critical Reviews Biotechnology, 2018,38(3):1-15.
doi: 10.1080/07388551.2017.1311295
[9] Ellis L M, Hicklin D J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nature Reviews Cancer, 2008,8(8):579-591.
doi: 10.1038/nrc2403 pmid: 18596824
[10] Alevizakos M, Kaltsas S, Syrigos K N. The VEGF pathway in lung cancer. Cancer Chemotherapy and Pharmacology, 2013,72(6):1169-1181.
doi: 10.1007/s00280-013-2298-3 pmid: 24085262
[11] Rogers L M, Veeramani S, Weiner G J. Complement in monoclonal antibody therapy of cancer. Immunologic Research, 2014,59(1-3):203-210.
doi: 10.1007/s12026-014-8542-z pmid: 24906530
[12] Weiner G J. Building better monoclonal antibody-based therapeutics. Nature Reviews Cancer, 2015,15(6):361-370.
doi: 10.1038/nrc3930 pmid: 25998715
[13] Lee H T, Lee S H, Heo Y S. Molecular interactions of antibody drugs targeting PD-1, PD-L1, and CTLA-4 in immuno-oncology. Molecules, 2019,24(6).
pmid: 30917562
[14] Goodman A, Patel S P, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nature Reviews Clinical Oncology, 2016,14(4):203-220.
doi: 10.1038/nrclinonc.2016.168 pmid: 27805626
[15] Lehermayr C, Mahler H C, Mader K, et al. Assessment of net charge and protein-protein interactions of different monoclonal antibodies. Journal of Pharmaceutical Sciences, 2011,100(7):2551-2562.
doi: 10.1002/jps.22506 pmid: 21294130
[16] Schmidt S. Strategies to predict the developability of biopharmaceuticals. American Pharmaceutical Review, 2017,20(6) 122-125.
[17] Agrawal N J, Dykstra A, Yang J, et al. Prediction of the hydrogen peroxide-induced methionine oxidation propensity in monoclonal antibodies. Journal of Pharmaceutical Sciences, 2018,107(5):1282-1289.
doi: 10.1016/j.xphs.2018.01.002 pmid: 29325924
[18] Tomar D S, Singh S K, Li L, et al. In silico prediction of diffusion interaction parameter (kD), a key indicator of antibody solution behaviors. Pharmaceutical Research, 2018,35(10):193.
doi: 10.1007/s11095-018-2466-6 pmid: 30128780
[19] Schmidt A S. Forced degradation studies for biopharmaceuticals. Biopharm International, 2016,29(7):0-0.
[20] Wang W, Ohtake S. Science and art of protein formulation development. International Journal of Pharmaceutics, 2019.
doi: 10.1016/j.ijpharm.2020.120003 pmid: 33132150
[21] Maroju R K, Barash S, Brisbane C E. Evaluation of a biologic formulation using customized design of experiment and novel multidimensional robustness diagrams. Journal of Pharmaceutical Sciences, 2017,107(3):797-806.
doi: 10.1016/j.xphs.2017.10.024 pmid: 29107045
[22] Cui Y, Cui P, Chen B, et al. Monoclonal antibodies: formulations of marketed products and recent advances in novel delivery system. Drug Development and Industrial Pharmacy, 2017,43(4):519-530.
doi: 10.1080/03639045.2017.1278768 pmid: 28049357
[23] Falconer R J. Advances in liquid formulations of parenteral therapeutic proteins. Biotechnology Advances, 2019,37(7).
doi: 10.1016/j.biotechadv.2019.05.002 pmid: 31075306
[24] Cirkovas A, Sereikaite J. Different effects of (L)-arginine on the heat-induced unfolding and aggregation of proteins. Biologicals, 2011,39(3):181-188.
doi: 10.1016/j.biologicals.2011.04.003 pmid: 21550265
[25] Maruno T, Watanabe H, Yoneda S, et al. Sweeping of adsorbed therapeutic protein on prefillable syringes promotes micron aggregate generation. Journal of Pharmaceutical Sciences, 2018,107(6):1521-1529.
doi: 10.1016/j.xphs.2018.01.021 pmid: 29421215
[26] Hung J J, Dear B J, Dinin A K, et al. Improving viscosity and stability of a highly concentrated monoclonal antibody solution with concentrated proline. Pharmaceutical Research, 2018,35(7):133.
doi: 10.1007/s11095-018-2398-1 pmid: 29713822
[27] Dion M Z, Leiske D, Sharma V K, et al. Mitigation of oxidation in therapeutic antibody formulations: a biochemical efficacy and safety evaluation of N-acetyl-tryptophan and L-methionine. Pharmaceutical Research, 2018,35(11):222.
doi: 10.1007/s11095-018-2467-5 pmid: 30280329
[28] Sreedhara A, Lau K, Li C, et al. Role of surface exposed tryptophan as substrate generators for the antibody catalyzed water oxidation pathway. Molecular Pharmaceutics, 2013,10(1):278-288.
doi: 10.1021/mp300418r pmid: 23136850
[29] Platts L, Falconer R J. Controlling protein stability: mechanisms revealed using formulations of arginine, glycine and guanidinium HCl with three globular proteins. International Journal of Pharmaceutics, 2015,486(1):131-135.
[30] Estrela N, Franquelim H G, Lopes C, et al. Sucrose prevents protein fibrillation through compaction of the tertiary structure but hardly affects the secondary structure. Proteins, 2015,83(11):2039-2051.
doi: 10.1002/prot.24921 pmid: 26344410
[31] Das A, Basak P, Pattanayak R, et al. Trehalose induced structural modulation of Bovine Serum Albumin at ambient temperature. International Journal of Biological Macromolecules, 2017,105(1):645-655.
[32] Reichert D, Gröger S, Hackel C, et al. New insights into the interaction of proteins and disaccharides-the effect of pH and concentration. Biopolymers, 2017,107(2):39-45.
pmid: 27677543
[1] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[2] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[3] 明玥,赵自通,王鸿磊,梁志宏. 基于序列和结构分析的酶热稳定性改造策略*[J]. 中国生物工程杂志, 2021, 41(10): 100-108.
[4] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[5] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[6] 王彦伟,李鹏昊,梁严予,关洋,逄文强,田克恭. 猪圆环病毒2型病毒样颗粒的高效组装技术研究*[J]. 中国生物工程杂志, 2020, 40(11): 35-42.
[7] 刘国芳,刘晓志,高健,王志明. 宿主细胞残留蛋白质对单克隆抗体药物质量影响及其质量控制 *[J]. 中国生物工程杂志, 2019, 39(10): 105-110.
[8] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.
[9] 张潘潘,许延吉,王之可,刘晓,李素霞. 重组猪胰蛋白酶及其R122位点突变体在毕赤酵母中的高效表达及其性质研究[J]. 中国生物工程杂志, 2018, 38(5): 56-65.
[10] 高红桃, 郭晓威, 孙丹, 解长睿, 王法微, 李海燕. 亚麻芥种子油体的提取及稳定性研究[J]. 中国生物工程杂志, 2017, 37(9): 98-104.
[11] 刘延娟, 李旭娟, 袁航, 刘娴, 高艳秀, 龚明, 邹竹荣. 融合酰基载体蛋白可增强大肠杆菌重组蛋白的可溶性和热稳定性[J]. 中国生物工程杂志, 2017, 37(7): 115-123.
[12] 程可利, 刘晓, 李素霞. 对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究[J]. 中国生物工程杂志, 2017, 37(4): 56-67.
[13] 任华景, 刘晓志, 王志明, 高健. 中枢神经系统疾病治疗性抗体药物应用进展[J]. 中国生物工程杂志, 2016, 36(9): 54-58.
[14] 郭超, 王志彦, 甘一如, 李丹, 邓勇, 于浩然, 黄鹤. 技术与方法理性设计改造牛肠激酶的热稳定性[J]. 中国生物工程杂志, 2016, 36(8): 46-54.
[15] 虞晓丹, 吴秀秀, 姚冬生, 刘大岭, 谢春芳. 基于分子结构评价的Bacillus subtilis β-1,4-内切木聚糖酶胰蛋白酶抗性的理性设计[J]. 中国生物工程杂志, 2016, 36(8): 80-88.