Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (10): 105-110    DOI: 10.13523/j.cb.20191013
综述     
宿主细胞残留蛋白质对单克隆抗体药物质量影响及其质量控制 *
刘国芳,刘晓志,高健,王志明()
华北制药集团新药研究开发有限责任公司 抗体药物研制国家重点实验室 石家庄 050015
Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody
LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming()
State Key Laboratory of Antibody Research & Development,New Drug Research and Development Company Ltd,North China Pharmaceutical Corporation,Shijiazhuang 050015,China
 全文: PDF(430 KB)   HTML
摘要:

以单克隆抗体药物(monoclonal antibodies,mAbs)为代表的生物制品药物销售在不断扩大,并呈现持续上升势头,mAbs的使用为疾病治疗提供了新策略。随着mAbs使用量增大,对产品质量提出了更高要求,随着宿主细胞表达mAbs水平的不断提高,宿主细胞蛋白(host cell proteins,HCP)含量也随之增加,上下游生产工艺面临不断挑战。 HCP所含蛋白质异常复杂,虽然一些HCP可能会被降解,但残留HCP仍会引起药物临床使用中的不良反应,从而影响药物的安全性和有效性。酶联免疫吸附试验(enzyme-linked immunesorbent assays,ELISAs)是目前HCP检测的重要方法之一, ELISAs可以定量检测药物中总HCP含量,但存在局限性。对正在开发的包括LC-MS / MS在内的多种分析方法进行HCP检测,将为药物工艺过程开发和验证提供更多依据。讨论了以CHO(Chinese hamster ovary,中国仓鼠卵巢)细胞系为宿主的mAbs生产中, HCP 的质量控制及检测分析方法的研究进展。

关键词: 单克隆抗体药物宿主细胞残留蛋白质质量控制检测方法    
Abstract:

The sales of biologic drugs represented by monoclonal antibodies (mAbs) are expanding and showing a rising trend. The use of mAbs provides a new strategy for disease treatment.With the increase in the use of mAbs,higher requirements are placed on the quality of the product.As the level of mAbs expressed by the host cells continues to increase,the content of host cell proteins (HCP) also increases,and the upstream and downstream production processes are constantly faced challenge.The protein contained in HCP is extremely complicated.Although some HCP may be degraded, residual HCP may cause adverse reactions in the clinical use of the drug, thereby affecting the safety and effectiveness of the drug.Enzyme-linked immune sorbent assays (ELISAs) are important methods for HCP detection. ELISAs can quantitatively measure total HCP levels in drugs, but there are limitations.HCP testing of various analytical methods,including LC-MS/MS,is under development,which will provide more evidence for drug process development and validation.The advances in quality control and assays for HCP production in the production of mAbs hosted by the CHO (Chinese hamster ovary) cell line were discussed.

Key words: Monoclonal antibody drug    Host cell protein    Quality control    Detection method
收稿日期: 2019-01-29 出版日期: 2019-11-12
ZTFLH:  Q819  
基金资助: * 国家重大新药创制科技重大专项(2017ZX09306010)
通讯作者: 王志明     E-mail: wzm3994@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘国芳
刘晓志
高健
王志明

引用本文:

刘国芳,刘晓志,高健,王志明. 宿主细胞残留蛋白质对单克隆抗体药物质量影响及其质量控制 *[J]. 中国生物工程杂志, 2019, 39(10): 105-110.

LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming. Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody. China Biotechnology, 2019, 39(10): 105-110.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191013        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I10/105

分类 基因 宿主残留蛋白质 分布区域
蛋白酶等 CTSB/D 组织蛋白酶B / D(激活天冬氨酰蛋白酶) 分泌,细胞质
MMP19 基质金属蛋白酶-19(降解多种蛋白质) 分泌,细胞质
HTRA1 丝氨酸蛋白酶HTRA1(剪切N端氨基酸) 分泌
PDIA6 蛋白二硫异构酶A6(参与二硫键的形成) 内质网腔
引起免疫反应的宿主蛋白 S100A6 Protein S100-A6 细胞膜/细胞核膜
RPL30 60S核糖体蛋白L30 细胞质
ANXA5 膜联蛋白A5 细胞质
CXCL3 C-X-C基序趋化因子3 分泌
PLBL2 磷脂酶 溶酶体
表1  mAbs产品中常见的宿主残留蛋白质
名称 功能
PDI9(蛋白质二硫化物酶) 减少二硫键的形成
BiP(78kDa葡萄糖调节蛋白) 促进折叠和组装蛋白质
DnaK(热休克蛋白)
促进蛋白质疏水区域同蛋白质上未折叠区域结合
表2  参与蛋白质聚集的HCP
工艺流程 降低HCP采用的策略
上游工艺 细胞系工程 敲除HCP相关基因
细胞库的建立
培养基组分 组分的筛选和优化
小规模培养工艺 温度、pH、溶解氧等培养条件的优化
放大培养(>100L) 批培养工艺、连续工艺的优化
下游工艺 细胞的收集 去除细胞及细胞碎片
Protein A纯化 进一步提高产物纯度
病毒灭活 灭活可能存在的病毒
其他去除HCP的环节 去除了HCP等工艺相关杂质
病毒过滤 去除可能存在的病毒
表3  生产工艺各环节中通常采用降低HCP的策略
应用项目 方法 优势 局限性
染色法 双向电泳 同时进行多点检测 仅观察到丰度值高的蛋白质
提高蛋白质定量检测的准确性 产品对检测造成掩盖干扰
费时费力
双向电泳-Western blot(荧光染色) 覆盖范围大
可以用于总HCP和抗HCP抗体的检测
荧光染色的灵敏度高
HCP的总量检测 ELISA HCP检测的金标准 不能得到特定HCP的信息
可以进行定量检测 覆盖范围受到HCP抗体覆盖范围的影响
桥连ELISA测定 灵敏度高于ELISA 不能得到特定HCP的信息
检测背景低
HCP的鉴定 LC-MS(蛋白质组学方法学) 特异性检测 需要专业的数据采集分析
可以进行定量检测 数据质量依赖于使用的数据库质量
灵敏度非常高
质量检测的准确度高
有限的CHO细胞生物信息数据将制约HCP的数据分析
表4  HCP的鉴定与检测方法的比较
[1] Hanania N A, Noonan M, Corren J , et al. Lebrikizumab in moderate-to-severe asthma:pooled data from two randomised placebo-controlled studies. Thorax, 2015,70(8):748-756.
[2] Wullner D, Zhou L, Bramhall E , et al. Considerations for optimization and validation of an in vitro PBMC derived T cell assay for immunogenicity prediction of biotherapeutics. Clinical Immunology, 2010,137(1):5-14.
[3] Joubert M K, Deshpande M, Yang J , et al. Use of in vitro assays to assess immunogenicity risk of antibody-based biotherapeutics. PLoS One, 2016,11(8):e0159328.
[4] Bailey-Kellogg C, Gutierrez A H, Moise L , et al. CHOPPI:a web tool for the analysis of immunogenicity risk from host cell proteins in CHO-based protein production. Biotechnology and Bioengineering, 2014,111(11):2170-2182.
doi: 10.1002/bit.25286
[5] Eon-Duval A, Valax P, Solacroup T , et al. Application of the quality by design approach to the drug substance manufacturing process of an Fc fusion protein:towards a global multi-step design space. Journal of Pharmaceutical Sciences, 2012,101(10):3604-3618.
doi: 10.1002/jps.23273
[6] Bracewell D G, Francis R, Smales C M . The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk-based management for their control. Biotechnology and Bioengineering, 2015,112(9):1727-1737.
[7] Zhang Y B, Howitt J, Mccorkle S , et al. Protein aggregation during overexpression limited by peptide extensions with large net negative charge. Protein Expression and Purification, 2004,36(2):207-216.
doi: 10.1016/j.pep.2004.04.020
[8] Kim J Y, Kim Y G, Baik J Y , et al. A proteomic approach for identifying cellular proteins interacting with erythropoietin in recombinant Chinese hamster ovary cells. Biotechnology Progress, 2010,26(1):246-251.
[9] Bee J S, Tie L, Johnson D , et al. Trace levels of the CHO host cell protease cathepsin D caused particle formation in a monoclonal antibody product. Biotechnology Progress, 2015,31(5):1360-1369.
[10] Lauer T M, Agrawal N J, Chennamsetty N , et al. Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. Journal of Pharmaceutical Sciences, 2012,101(1):102-115.
doi: 10.1002/jps.22758
[11] Chiu J, Valente K N, Levy N E , et al. Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations. Biotechnology and Bioengineering, 2017,114(5):1006-1015.
[12] Valente K N, Lenhoff A M, Lee K H . Expression of difficult-to-remove host cell protein impurities during extended Chinese hamster ovary cell culture and their impact on continuous bioprocessing. Biotechnology and Bioengineering, 2015,112(6):1232-1242.
[13] Hogwood C E, Tait A S, Koloteva-Levine N , et al. The dynamics of the CHO host cell protein profile during clarification and protein A capture in a platform antibody purification process. Biotechnology and Bioengineering, 2013,110(1):240-251.
doi: 10.1002/bit.24607
[14] Tait A S ,Hogwood C E M,Smales C M,et al. Host cell protein dynamics in the supernatant of a mAb producing CHO cell line. Biotechnology and Bioengineering, 2012,109(4):971-982.
doi: 10.1002/bit.24383
[15] Goey C H ,Tsang J M H,Bell D, et al. Cascading effect in bioprocessing-the impact of mild hypothermia on CHO cell behavior and host cell protein composition. Biotechnology and Bioengineering, 2017,114(12):2771-2781.
[16] Goey C H, Bell D, Kontoravdi C . Mild hypothermic culture conditions affect residual host cell protein composition post-protein A chromatography. mAbs, 2018,10(3):476-487.
[17] Pezzini J, Joucla G, Gantier R , et al. Antibody capture by mixed-mode chromatography:a comprehensive study from determination of optimal purification conditions to identification of contaminating host cell proteins. Journal of Chromatography A, 2011,1218(45):8197-8208.
doi: 10.1016/j.chroma.2011.09.036
[18] Nogal B, Chhiba K, Emery J C . Select host cell proteins coelute with monoclonal antibodies in protein A chromatography. Biotechnology Progress, 2012,28(2):454-458.
doi: 10.1002/btpr.1514
[19] Tarrant R D ,Velez-Suberbie M L,Tait A S, et al.Host cell protein adsorption characteristics during protein A chromatography. Biotechnology Progress, 2012,28(4):1037-1044.
doi: 10.1002/btpr.1581
[20] Zhang Q, Goetze A M, Cui H , et al. Characterization of the co-elution of host cell proteins with monoclonal antibodies during protein A purification. Biotechnology Progress, 2016,32(3):708-717.
[21] Bee J S, Machiesky L M, Peng L , et al. Identification of an IgG CDR sequence contributing to co-purification of the host cell protease cathepsin D. Biotechnology Progress, 2017,33(1):140-145.
[22] Gagnon P, Nian R, Lee J , et al. Nonspecific interactions of chromatin with immunoglobulin G and protein A, and their impact on purification performance. Journal of Chromatography A, 2014,1340(2):68-78.
[23] Gagnon P, Nian R, Yang Y , et al. Non-immunospecific association of immunoglobulin G with chromatin during elution from protein A inflates host contamination, aggregate content,and antibody loss. Journal of Chromatography A, 2015,1408(21):51-60.
[24] Nian R, Gagnon P . Advance chromatin extraction enhances performance and productivity of cation exchange chromatography-based capture of Immunoglobulin G monoclonal antibodies. Journal of Chromatography A, 2016,1453:54-61.
[25] Nian R, Zhang W, Tan L , et al. Advance chromatin extraction improves capture performance of protein A affinity chromatography. Journal of Chromatography A, 2016,1431(29):1-7.
[26] Jin M, Szapiel N, Zhang J , et al. Profiling of host cell proteins by two-dimensional difference gel electrophoresis (2D-DIGE): Implications for downstream process development. Biotechnology and Bioengineering, 2010,105(2):306-316.
[27] Farrell A, Mittermayr S, Morrissey B , et al. Quantitative host cell protein analysis using two dimensional data independent LC-MS(E). Analytical Chemistry, 2015,87(18):9186-9193.
[28] Kreimer S, Gao Y, Ray S , et al. Host cell protein profiling by targeted and untargeted analysis of data independent acquisition mass spectrometry data with parallel reaction monitoring verification. Analytical Chemistry, 2017,89(10):5294-5302.
[29] Chiverton L M, Evans C, Pandhal J , et al. Quantitative definition and monitoring of the host cell protein proteome using iTRAQ - a study of an industrial mAb producing CHO-S cell line. Biotechnology Journal, 2016,11(8):1014-1024.
[1] 李帅鹏,任和,安展飞,杨艳坤,白仲虎. 血栓调节蛋白化学发光免疫分析检测方法的建立*[J]. 中国生物工程杂志, 2021, 41(4): 30-36.
[2] 吝建华,韩君,徐寒梅. PD-1/PD-L1免疫检查点抗体药物制剂稳定性开发[J]. 中国生物工程杂志, 2020, 40(10): 35-42.
[3] 孟迎迎, 姚长洪, 刘娇, 申培丽, 薛松, 杨青. 微藻生物质成分检测方法评述[J]. 中国生物工程杂志, 2017, 37(7): 133-143.
[4] 任华景, 刘晓志, 王志明, 高健. 中枢神经系统疾病治疗性抗体药物应用进展[J]. 中国生物工程杂志, 2016, 36(9): 54-58.
[5] 王佃亮. 细胞药物的标准及质量控制——细胞药物连载之四[J]. 中国生物工程杂志, 2016, 36(10): 115-121.
[6] 李星, 姚文兵, 徐晨. 聚乙二醇化重组蛋白药物的质量控制[J]. 中国生物工程杂志, 2015, 35(12): 109-114.
[7] 王兰, 夏懋, 高凯. 抗体偶联药物的研究进展与质量控制[J]. 中国生物工程杂志, 2014, 34(4): 85-94.
[8] 傅璐1,黄辉2,陈舒扬1,初波1,刘兢1. 抗ErbB2嵌合抗体chA21大规模纯化工艺的建立及质量研究[J]. 中国生物工程杂志, 2009, 29(07): 68-73.
[9] 刘乐庭, 刘爽, 封燕芸, 陈建国, 于常海. NASBA——一种新型禽流感病毒检测方法[J]. 中国生物工程杂志, 2005, 25(11): 96-99.
[10] 薛迎春. 以Willow Bark为例探讨植物提取物的开发[J]. 中国生物工程杂志, 2004, 24(3): 98-99.
[11] 程从升, 李作生, 余兴龙, 李素, 扈荣良, 江禹, 李尚波, 涂长春. 猪瘟DNA疫苗制备工艺研究[J]. 中国生物工程杂志, 2004, 24(10): 63-69.
[12] 张翊, 王军志, 饶春明. 人降钙素基因相关肽脂质体质量标准的研究[J]. 中国生物工程杂志, 2001, 21(1): 75-78.
[13] 张新咏, 卢圣栋, 林缨. 基因工程药物的质量控制[J]. 中国生物工程杂志, 1997, 17(1): 13-17.
[14] 蔡耘. 基质辅助激光解吸附飞行时间质谱(MALDI-TOF-MS)在生物工程产品质量控制中的应用[J]. 中国生物工程杂志, 1996, 16(4): 23-25.
[15] 汪恩浩. 面向二十一世纪的深圳现代生物技术产业[J]. 中国生物工程杂志, 1994, 14(5): 28-28.