中国生物工程杂志, 2021, 41(11): 100-109 doi: 10.13523/j.cb.2106043

综述

群体感应系统在合成生物学中的应用*

郑义, 郭世英, 隋凤翔, 杨骐羽, 卫雅萱, 李晓岩,**

东北林业大学生命科学学院 哈尔滨 150040

Applications of Quorum Sensing Systems in Synthetic Biology

ZHENG Yi, GUO Shi-ying, SUI Feng-xiang, YANG Qi-yu, WEI Ya-xuan, LI Xiao-yan,**

School of Life Science, Northeast Forestry University, Harbin 150040, China

通讯作者: **电子信箱: xyli821187@163.com

收稿日期: 2021-06-23   修回日期: 2021-09-2  

基金资助: * 中央高校基本科研业务费专项(2572019BD01)
国家级大学生创新创业训练计划(202010225122)

Received: 2021-06-23   Revised: 2021-09-2  

摘要

群体感应(quorum sensing, QS)是一种广泛存在于多种微生物中的胞间通信系统,细菌产生的自诱导物随着种群密度的增加而积累,诱导细菌对种群密度的响应,调节生物膜的形成或特定基因的表达。近年来,随着群体感应系统原理与关键元件的逐渐清晰,应用合成生物学手段进行多技术联合以及多系统间正交性设计具有极大的发展潜力,群体感应系统已成为合成生物学家动态调控胞间通信常用的重要手段之一。在群体感应是细胞-细胞间通信系统的基础上,对多种群体感应系统的联合设计在生物基化学品生产中自动化调控的研究进展进行综述;并针对群体感应系统在生物电化学转化领域实现双向生物信息交流的应用进行总结;同时归纳了医学领域中群体感应系统的动态调控功能与多种疾病诊断及治疗结合的研究进展,讨论了群体感应系统在多细胞通信和实际应用等方面的发展前景。

关键词: 群体感应; 胞间通信; 合成生物学; 动态调控

Abstract

Quorum sensing (QS) is an intercellular communication system found in many microorganisms. The autoinducers accumulate as the bacteria population grows. It can promote bacteria to acclimate current population density, regulate the formation of biofilm, and modulate the expression of specific genes. In recent years, researchers have been working on the principle of operation as well as the key elements of QS system and now we understand much more about them. These results would help us in designing a promising multi-system work using multiple methods of synthetic biology, and it can help researchers to take control of intercellular communication dynamically, which is particularly important. On the basis that quorum sensing is a cell-cell communication system, the research progress of the joint design of multiple quorum sensing systems in the automatic regulation of bio based chemicals production is reviewed. The application of quorum sensing system to realize two-way biological information exchange in the field of bioelectrochemical transformation is summarized. At the same time, this article summarizes the research progress of the combination of the dynamic regulation function of quorum sensing system and the diagnosis and treatment of various diseases in the medical field, and the expectation of development prospect.

Keywords: Quorum sensing; Intercellular communication; Synthetic biology; Dynamically regulate

PDF (988KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

郑义, 郭世英, 隋凤翔, 杨骐羽, 卫雅萱, 李晓岩. 群体感应系统在合成生物学中的应用*. 中国生物工程杂志, 2021, 41(11): 100-109 doi:10.13523/j.cb.2106043

ZHENG Yi, GUO Shi-ying, SUI Feng-xiang, YANG Qi-yu, WEI Ya-xuan, LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology. China Biotechnology, 2021, 41(11): 100-109 doi:10.13523/j.cb.2106043

随着细菌的增殖生长,细菌会释放一些自诱导物(auto-inducer, AI),自诱导物的浓度随着细菌种群密度的增加逐渐增多,达到一定阈值后反作用于细菌使其发生一系列变化,这种现象被命名为细菌群体感应(quorum sensing, QS)(图1)[1]。1970年,Nealson和Hastings[2]通过研究海洋费氏弧菌(Vibrio fischeri)的发光与生长时期的关系,论证了细菌荧光素酶的合成受转录水平的控制,并首次提出了“自诱导”的概念,该细菌发光的现象受细菌群体感应的控制。细菌群体感应作为细菌种内和种间相互联系的一种调控方式,有着相对清晰的机制和简单可控的元件,通常被应用于合成生物学领域,参与逻辑门的构建[3]、不同种群数量的控制[4]和对膜结构的影响[5]等方面。

图1

图1   群体感应系统的广义模型[1]

Fig.1   Generalized model of quorum sensing

Numbers in the flow charts represent different stages of the QS process. QS signal is synthesised by synthase and spread out of the cell. Those signals couldn’t be transported into cell due to diffusion or active transport until the threshold is reached. QS signals would bind transcription regulators in cell inner,the complex of them could bind QS promotor so that the expression of target gene could be regulated


微生物的群体感应分为种内感应和种间感应,分别对应多种自诱导物、转录调节因子、感受态启动子等元件。种内群体感应的自诱导物分为两类:(1)革兰氏阴性菌的自诱导物普遍以酰基高丝氨酸内酯(acyl-homoserine lactone, AHL)为代表,LuxR基因编码的转录抑制因子LuxR与受群体感应调控的启动子PLuxI结合抑制下游基因的表达,随着细菌种群密度的增长,信号分子合成酶LuxI产生的AHL于细菌外富集,当AHL浓度达到一定阈值时,跨膜进入菌体内,与转录抑制因子LuxR结合形成LuxR-AHL复合物,激活群感启动子PLuxI下游基因的表达[6]。除了常用的LuxR/LuxI群感系统,研究人员对革兰氏阴性菌Pantoea stewartia菌株中EsaR/EsaI群感系统的研究也足够深入,与LuxR同源的转录激活因子EsaR在缺乏AHL的情况下结合PEsaS启动子并激活转录。EsaI基因控制AHL合酶的产生促使AHL的富集,EsaR-AHL复合物的形成抑制了EsaR与PEsaS启动子结合,从而抑制下游基因的表达[7]。(2)革兰氏阳性菌间的自诱导物常以自诱导寡肽(auto inducer peptide, AI-P)为代表。与革兰氏阴性菌的群体感应系统不同,革兰氏阳性菌以一种自诱导寡肽(antoinduction peptides, AI-Ps)感知胞间信息,其中研究较为深入的是金黄色葡萄球菌的群体感应系统。与AHL及AI-2等小分子不同,寡肽AI-P需膜转运蛋白或膜通道蛋白才能进行跨膜运输。AI-P分子由菌体内的前体肽合成酶合成前体肽后,经膜通道蛋白运输至体外并将其加工成熟。当环境中AI-P达到相应阈值后与信号交换系统中的磷酸激酶结合,在进行一系列磷酸化、去磷酸化的传递后,磷酸化的受体蛋白识别结合特定靶序列,从而调控下游相关基因的表达[8]

种间群体感应的自诱导物通常为普遍存在于革兰氏阴性菌和革兰氏阳性菌种间的呋喃糖基硼酸二酯,通常被定义为Ⅱ型自诱导物(auto inducer 2, AI-2)。信号分子合成酶LuxS基因表达的LuxS蛋白基于菌体内的甲基循环,合成AI-2的前体(4,5-dihydroxy-2,3-pentanedione, DPD)。DPD于细胞外自身环化成呋喃糖基硼酸二酯AI-2,之后AI-2在细胞外积累。AI-2达到阈值后通过跨膜蛋白LsrACDB进入细胞,并被磷酸激酶LsrK磷酸化后与转录抑制因子LsrR形成LsrR-AI-2-P复合物,解除转录抑制因子LsrR对双向lsr操纵子的抑制,激活下游目的基因的转录和AI-2加速的摄取[9]。 此外,吲哚等物质同样可以作为群感系统中的信号分子[10],肠出血性大肠杆菌中亦存在AI-3/肾上腺素/去甲肾上腺素介导的群感系统来控制毒力因子的释放[11],但是此类系统中的某些元件或反应过程仍需要深入研究。目前,群体感应系统逐渐被应用于诸多创新性想法和项目中,国际遗传工程机器大赛(International Genetically Engineered Machine Competition,iGEM)拥有一个可以用来构建合成学基因通路的“Bio-brick”元件库,细菌各种群体感应系统的关键组成元件是该数据库中常被使用的部分(http://parts.igem.org)。

“合成生物学”(synthetic biology)最早出现在1980年描述通过DNA重组技术而人工编辑细菌的文献中[12]。经过数十年的研究,合成生物学早已不仅仅代表着对生物元件进行组装,正逐步向着体外创造生命、理解生命的方向发展[13]。人们利用基本的生物学元件设计和构建了基因开关[14]、信号传递转导器[15]和逻辑门[16]等合成元件,实现对生命系统的工程学编辑,使其拥有特定的行为。随着基因组计划的实施,以及基因组学、蛋白质组学和生物信息学的发展,学科交融促使合成生物学成为21世纪的新兴学科[17]。同时,基于多个学科交融的背景,合成生物学家将逐渐使基因通路变得稳定、可控的群体感应系统应用于多个领域。本文对近5年群体感应系统在合成生物学中的多种设计与应用进行了综述。

1 细菌群体感应在生物基化学品生产领域中的应用

随着合成生物学的快速发展以及工程联合体(engineered consortia)类型和功能的日渐复杂化,细菌群体感应在生物基化学品生产领域中的应用也呈现出多元化创新趋势。为提高生物基化学品生产的效率及生产系统的自动化程度,合成生物学家在探寻更多的机制来控制联合体内菌株的基因表达。在利用合成生物学手段调控生物基化学品生产的过程中,不可避免会出现对种群密度的检测与动态控制问题,在以往的研究过程中,研究人员通过群感系统调控裂解基因的表达,利用裂解细胞的方式释放其中递送的药物,达到动态调节的目的[18,19],但是这种基于裂解的基因通路可能会在生长与进化过程中产生遗传的不稳定性,因此,需要高精度、高自动化和多种群感系统联合设计的基因通路进行优化。

然而,研究人员通过研究多种细菌群体感应系统后发现,由于同类型的大多数信号以及变构转录因子 (allosteric transcription factor, aTFs) 具有相似的结构,各种类型相似的群体感应系统间常出现互相干扰现象[20]。为减少此类互相干扰现象,通常出现复杂的基因通路只能依赖于一两个群体感应系统调控的现象,存在控制精确性存在偏差、系统自动化程度单一等缺点,极大地限制了群体感应系统的设计空间。为提高对基因表达的控制和预测精度,合成生物学家在设计相互耦联基因通路的同时,也十分注重多重基因调控中相对独立的正交性这一先决条件[21,22]。所谓正交性,即为理想的胞间通信依赖于一系列绝缘性良好的通信系统来传递特异信号的特性[23]。为了探究群体感应系统间的干扰性并获得具有高正交性的群体感应系统以及关键元件,Halleran等[24]应用无细胞系统成功预测了AHL介导的信号水平干扰,为应用转录-翻译无细胞体系,高通量快速表征多种群体感应系统的相互干扰效应提供了模板。Kylilis等[25]建立了大型群体感应特征数据库,量化了多种同源和非同源化学信号相互作用,同时,开发了一种可以自动选择正交性信通道设计联合体的软件。Zeng等[26]应用逆向工程方法,将系统生物学(system biology)与合成生物学结合,利用网络枚举结合实验设计,设计出了一个超灵敏的Lux群体感应转录开关。

基于多种正交性群体感应系统及相关元件,通过细菌群体感应系统与目的基因通路的结合,赋予生物基化学品生产的过程中应用的工程菌感知胞外环境及细胞-细胞间通信的能力,从而对工程菌群密度的监视动态调控,实现自主高效地对胞内代谢途径的动态调节[27]

1.1 细菌群体感应监测种群状态

细菌群体感应在监视和控制种群状态等方面也具有显著优势。Terrell等[28]利用两个细胞群对诱导物AI-2的响应浓度不同的特点,应用纳米技术展示了一种评估细菌群体感应活性的方法。通过设计AI-2群感系统控制两种荧光报告系统以及表面亲和肽,使产生荧光的细胞也可以被磁性纳米粒子附着,通过磁刺激可视化地显示群体感应的活性。为实现不同微生物种群的共存协同作用,Osmekhina等[29]研发了一种微流体系统,使用纳米纤维素过滤薄膜将“Sender”和“Receiver”两个菌群分开,Sender菌株通过产生自诱导物AHL能够透过薄膜诱导激活Receiver菌株中受PLuxI启动子调控的荧光蛋白,在两个菌群中分别引入受PLuxI启动子调控的内酯酶aiiA,借助其降解AHL的功能特点构建负反馈通路,有望应用于复杂环境中自主动态调控两个独立生长菌群的活动。通过利用可视化监测以及物理方法的分离控制,生物基化学品生产的效率有望在未来得到更为理想的提升。

1.2 细菌群体感应动态调控种群密度

磷酸转移酶系统(PTS)广泛存在于细菌、真菌和古细菌当中,主要是通过磷酸级联反应将各种糖及其衍生物进行磷酸化,在生物体对于糖摄取和糖代谢方面发挥着重要的作用。组氨酸磷酸载体蛋白HPr和激酶LsrK能够形成共晶结构,可通过抑制LsrK的活性,从而抑制群体感应的发生。细菌处于指数型生长时,HPr和LsrK紧密结合,LsrK的活性被抑制,无法正常磷酸化AI-2,阻碍群体感应的正常进行。当细菌处于稳定生长状态时,HPr呈现磷酸化状态,与LsrK的结合能力下降,能正常磷酸化AI-2,使群体感应正常进行[30]。基于上述群体感应与糖代谢之间的密切联系,Stephens等[31]证实了诱导HPr的表达可以增加细胞生长率,并利用正交性较强的AI-1与AI-2群感系统构建工程联合体,设计出响应AI-2信号并产生AI-1信号分子的翻译菌株,以及基于AI-1信号水平调节菌群生长率的控制菌株,研究出一种自主控制工程菌种群相对密度的系统。

通过将CRISPR技术与细菌群体感应相耦联,许多新的设计和应用逐步被开发出来。通过对CRISPR系统中Cas9蛋白的催化失活,消除了Cas9蛋白对DNA的剪切功能。合成生物学家利用催化失活的Cas9(dCas9)与基因组结合后阻止转录的特性,延伸出CRISPR抑制技术(CRISPRi)。同时,合成生物学家在dCas9上连接转录激活子,可以有效促进基因组特定位点的转录,开发出了CRISPR激活技术(CRISPRa)[32]。由于最常用的底盘生物Escherichia coli菌株可用的碳源种类有限,而Pseudomonas putida菌株可以将多种碳源转化成关键代谢产物,Liu等[33]计划应用E.coli-P.putida工程联合体节省碳源的同时提高生产效率。为调控混合菌群的种群密度,基于DNA复制的起始依赖与复制起始位点OriC结合的起始蛋白DnaA的特点,Liu等[33]应用CRISPRi技术设计了组成型表达的sgRNAs来靶向dnaA基因的转录,同时,通过Lux群感系统中的PLuxI启动子调控dCas9的表达,构建了可以根据细菌种群密度动态调节CRISPRi的Q-CRISPRi系统,为保证碳源的最大利用率,将Q-CRISPRi系统引入P.putida菌株中使其于生长指数期时DNA复制受到抑制,使E.coli菌株对碳源的利用率达到最大程度,从而增加了E.coli菌株的相对种群密度,实现了对混合菌群种群密度的动态调控。

基于群体感应的动态调节,Alnahhas 等[34]将传统的共抑制系统与两种群体感应系统相耦联并扩展到两种菌株,通过数学模型证明菌株间的比率受诱导物浓度控制的关系,利用两种菌株生长过程中产生的群体感应诱导物种类与浓度间的不同,以一菌株产生的自诱导物,诱导表达另一菌株中可以抑制该诱导物的阻遏物,通过自主基因调控达到防止菌株过度生长的目的。此外,通过一系列的基因工程的修饰,Jiang等[35]建立了两套完整的有自诱导机制的正交群体感应体系,将las系统与tra系统导入一个细胞中构建自动级联通路,实现了基因的自动延时顺序表达,避免了菌群早期生长中存在的缺陷,使其可以在细胞密度达到阈值后启动生产,并且可以实现分时段调节细胞代谢通量。Niederholtmeyer等[36]基于群体感应这一种常见的胞间通信系统提出一种人工细胞模拟物,即通过设计大分子蛋白质代替细菌群体感应中的信号小分子,实现了大分子模拟细菌的群体感应现象,并提出了研究大量人工细胞间通信的新方法。

1.3 细菌群体感应可提高次生代谢产物生产效率

近年来,合成生物学在生物基化学品生产领域中的应用也逐渐呈现出多元化创新趋势。Wu等[37]借助于两个具有高正交性的群体感应系统和全局mRNA衰减,设计了一种动态资源分配策略,利用费氏弧菌中响应AHL的Lux群感系统控制中链脂肪酸的合成,来自粪肠球菌中响应自诱导肽的PrgX群感系统调控核糖核酸内切酶MazF的表达,基于MazF可以切割约96%的大肠杆菌编码RNA序列而达到全局mRNA衰减的效果。同时,通过基因编辑技术群感系统中自动诱导物合酶和转录调节因子中MazF识别位点得以去除。当细菌种群密度达到触发阶段1时,Lux群感系统启动中链脂肪酸的合成;随着种群密度的增加进入触发阶段2时,PrgX群感系统控制MazF的表达,调控全局mRNA衰减,使细胞资源充分应用于目标合成途径,大大提高了中链脂肪酸的产量。该策略可使工程菌群自我调节生长和生产细胞表型,极大简化了发酵过程中的人工操作。合成生物学家通过设计能与目的基因5'端小片段碱基互补配对的sRNA,可以在转录后水平动态抑制目的基因的表达。Bao等[38]将Lux群体感应系统与sRNA相耦联,设计出了能够动态控制目的基因抑制率从0到90%的基因通路。通过PLuxI群感启动子动态控制sRNA的表达,以sfGFP的即时表达量反映抑制率,在抑制了荧光基因表达的同时又不影响菌群的繁殖率,避免了目的基因早期过度抑制,同时,将目的基因的表达限制到稳定值。Gupta等[39]通过将Pantoea stewartia中的Esa群体感应系统与糖酵解代谢通路相整合,应用于生物化学合成中,动态控制糖酵解和芳香族氨基酸生物合成中的内源性必需基因,显著提高了碳源转化为肌醇、葡糖二酸以及莽草酸酯的效率。 Doong等[40]也提出两条正交调节系统动态调节内源产物的生产。细菌密度足够时,Esa群体感应系统控制的糖酵解酶Pfk-1基因的表达被抑制;同时,当肌醇足够多时,响应肌醇的转录调节因子lpsA会抑制肌醇氧化酶的表达,显著提高了葡糖二酸的产量。

2 细菌群体感应联合氧化还原在生物电化学系统中的应用

可同时作为电子载体和生物分子的特性,使氧化还原活性分子非常适用于生物电化学通信,利用电子流动改变氧化还原状态,从而调节细胞内信号转导,实现可控的生物电化学通信,对生物电化学领域的发展起着重要作用[41]。在合成生物学中,产物表达时间和信号响应耗时较长是亟须解决的瓶颈问题。为优化相关设计,合成生物学家利用光遗传学将蛋白质定位域与输入的电信号耦联,通过特定波长的光诱导蛋白质互作[42]或构象的改变[43],使特定生物信号得以调控,从而极大缩短了生物电化学转换器的反应时间。此外,通过生物传感器可实现生物电双向通信。目前,合成生物学和生物电子学领域正在融合,以实现双向生物信息交流。然而,该领域缺乏模块化、正交性和相关性(context independent)的生物信息工程系统。氧化还原活动将电化学与调控细胞中特定基因表达的潜力结合起来,因此,将设计出的电子可控的生物电化学转换器与群体感应相结合,使对微生物群落间交流的调控成为可能[44]。通过与细胞代谢活动完全正交的电信号将群体感应系统与生物电化学相结合,从而达到对菌群行为更加精确的调控。

可响应氧化应激的生物电化学转换器SoxR/SoxS系统,可以通过输入电信号,减少细胞中可渗透的氧化还原载体(铁/铁氰化物),改变天然大肠杆菌氧化绿脓菌素的呼吸和氧化还原过程,被氧化的绿脓菌素氧化激活SoxR转录调节因子,进而激活PSoxS启动子的转录,诱导目的基因的表达[45,46]。因此,为探寻双向通信(bidirectional communication)的潜力,Tschirhart等[46]将SoxR/SoxS系统与细菌群体感应相耦联,在外加电信号的作用下诱导细菌产生细菌群体感应系统中的天然信号分子,将电信号激活的菌群与无需电信号调控的菌群联系在一起,证实了基因通路的多功能性以及快速响应的特点。Bhokisham等[47]构建了eCRISPR通路,在生物电化学转换器SoxR/SoxS系统的控制下,将CRISPR技术与细菌群体感应相结合,利用CRISPRi技术抑制天然SoxR/SoxS系统介导的氧化应激反应调节因子,从而过滤掉多余的生物噪声。同时,以SoxR/SoxS系统联合CRISPRa技术电子激活AI-1合酶的表达,定向增强群体感应信号分子的释放,通过测定AI-1荧光报告菌株产生的相对荧光值,证明了群感信号可通过eCRISPR通路被成功放大,为复杂环境中生物电化学信号的转导提供新的可能。

Van Arsdale等[48]为探寻生物系统中分子信息的更直观表现方式,利用铜绿芽孢杆菌产生的群体感应信号分子和绿脓菌素作为激活“催化”和“试剂”细胞传感器的信号,分别表达酪氨酸和酪氨酸酶;通过氧化还原反应的发生,实现实时电化学信号转导,产生与信号分子浓度相关的电流。

Stephens[49]等重新组装了OxyRS系统与群感系统,以实现细胞生长的电子控制。利用吸附在金电极上的细胞作为“中继器”,以直接响应由电子激发在金电极表面生成的过氧化氢。“中继器”细胞检测到过氧化氢后,通过氧化反应将转录调节因子OxyR氧化,激活启动子PoxyS进而合成更稳定、更持久的细菌群体感应自诱导物AI-1作为信号分子;诱导信号AI-1激活“控制器”细胞中HPr的表达,从而使细胞增长率显著提高,同时,诱导培养5 h得到的细胞培养产物增殖3倍。为实现对微生物群落进行生物电化学调控,Terrell等[50]基于氧化还原涉及的信号转导开发了一种生物电子通信系统,利用该外部电子系统,实时调控三种微生物群落的生命活动。通过改造第一菌群使其能够吸附在金电极表面,将电信号传递给电极表面结合的微生物群落胞内的OxyRS系统,进而转化为细菌自诱导物AHL,从而诱导第二菌群所调控的治疗性粒细胞-巨噬细胞集落刺激因子(GMCSF)等难以检测的生物药物的表达与分泌,同时,第三菌群响应诱导信号后表达β-半乳糖苷酶(β-gal),并将4-氨基苯基-β-d-半乳吡喃糖苷(PAPG)切割为对氨基苯酚(PAP)产生可供检测的电子,实现可以实时验证的直接电子反馈。

然而,利用氧化还原活性分子对目的基因进行电化学调控仍处于初级阶段,随着细菌群体感应与生物电化学系统研究的日渐深入,利用基因控制与电化学结合的方式调节细胞生命活动,为疾病治疗以及新型生物疗法的创新带来新的可能。

3 细菌群体感应在医学领域的应用

随着活细胞基因编辑的迅速发展,合成生物学逐步成为解决许多疾病诊断和治疗等医学问题的潜在手段。近年来,细菌群体感应在医学领域的应用主要体现在三个方面:利用群体感应的自诱导物作为标记物进行检测、利用群体感应的自诱导物作为新型抗菌药物以及利用携带细菌群体感应系统的益生菌作为体内治疗的给药系统。

3.1 细菌群体感应在病原菌检测方面的应用

近年来,对于某些细菌感染导致的疾病,合成生物学家把检测的目标逐步转移到了群体感应产生的自诱导物上[51]。随着检测方式的逐步更新,在利用群体感应系统特征进行检测的同时,合成生物学家亦结合了无细胞体系等多种手段。

囊性纤维症(cystic fibrosis,CF)是一种常染色体隐性遗传疾病,其特征是在肺中积聚黏稠分泌物,并引发呼吸道感染和肺部病变。一种革兰氏阴性菌——铜绿假单胞菌,极易感染囊性纤维症患者,并通过群体感应调节生物膜以及毒力因子等致病物质的形成,造成患者感染[52]。铜绿假单胞菌产生两种AHL,N-丁酰基-高丝氨酸内酯(C4-HSL)和N-3-氧代-十二烷基-高丝氨酸内酯(3OC12-HSL)。Wen等[53]设计了一种无细胞生物传感器,利用无细胞蛋白表达系统中DNA编码的LasRV生物传感器与下游荧光报告系统相结合,以检测铜绿芽孢杆菌的感染情况。通过与液相色谱-质谱测量比较,定量测定囊性纤维症患者痰样提取物中的群体感应分子——3OC12-HSL,从而评估检测的假阴性与假阳性结果。同时,无细胞生物传感器具有节约成本等优点,并可以通过冻干方法储存运输。除了无细胞体系的应用,微型传感器也备受关注。利用群体感应与肠道菌群的密切联系,Mimee等[54]设计益生工程菌,将感受AHL的群体感应控制系统与Lux荧光报告系统耦联,并与可摄取的电子胶囊联合使用,通过电信号和数字信号的转换,达到可以原位检测肠道菌群生存状态的目的。

3.2 细菌群体感应在解决耐药性方面的应用

由于抗生素的过量使用,以及细菌-真菌混合感染产生的复杂机制,病原菌耐药性已渐渐成为世界共同面临的健康问题。以白色念珠菌的耐药性为例,病原微生物可以通过形成生物膜,阻止抗菌药物的接触杀伤机制;同时,细菌胞外多糖产生的屏蔽作用也会增强白色念珠菌等病原微生物的耐药性[55]

基于有些病原微生物的致病因子或生物膜的形成受细菌群体感应自诱导物的控制,合成生物学家将寻找抗生素替代物的目标逐渐转移到了细菌群体感应的运用上[56]。近年来,群体感应系统中的AHL与AI-2自诱导物对病原菌生物膜的影响与作用的研究越发深入[57,58,59]。Bandara等[60]设计了脂质体药物载体,通过群体感应诱导物C12AHL与抗真菌药物氟康唑的共同给药,增加了对白色念珠菌生物膜的消除效果。Sedlmayer等[61]基于哺乳动物细胞可以合成具有生物活性的AI-2分子且对其有耐受性的特点,利用甲酰化肽作为病原菌感染标志物,设计了甲酰化肽感受级联系统与AI-2合成系统相耦联的通路,这一哺乳动物细胞-细菌通信系统在检测到甲酰化肽后,协调细胞释放AI-2,从而抑制白色念珠菌等病原菌生物膜的形成。合成生物学家基于过敏性皮炎密切相关的皮肤微生物群,通过基因编辑合适的皮肤微生物群产生与金黄色葡萄球菌Agr介导的群体感应竞争抑制的AI-Ps,阻止金黄色葡萄球菌毒力因子的形成[62]。Piewngam等[63]验证了益生芽孢杆菌(Bacillus probiotic)产生的β-OH-C17-fengycin B作为AIPs的结构类似物,通过竞争性抑制来抑制鼻腔金黄色葡萄球菌(nasal S. aureus)Agr介导的群体感应,所产生的群体猝灭效应阻止了金黄色葡萄球菌在人体中的定殖。通过设计应用群体感应系统的工程联合体,抑制病原微生物在人体中的定殖以及降低甚至消除其毒性,拓宽了下一代抗菌药物的发展方向。

3.3 细菌群体感应在新型给药系统方面的应用

利用合成生物学编辑的益生底盘生物具有体积小、可肠道定殖、耐受性好以及某些益生菌可以靶向肿瘤微环境等优点。利用合成生物学手段开发新型可控的给药系统也极具前景。群体感应系统的应用,在保持底盘生物本身优势的同时,优化了其作为给药系统的可控性。

肿瘤微环境中特殊的低氧、免疫真空等环境为微生物提供了可以定殖的条件。基于上述条件,Danino等[64]建立了一种可用于检测肝癌和携带治疗药物的新型口服给药系统。工程益生菌在通过无创性口服给药方式进入患有肝癌的小鼠体内后,循环至肿瘤微环境并于该处富集,当种群密度足够大,自诱导物AHL的浓度达到阈值时,Lux群感系统启动β-半乳糖苷酶的表达,从而激活注射入小鼠体内的外源标记物产生可视化的荧光,通过尿液颜色的变化可以检测小鼠患癌情况,同时,该给药系统亦可以利用群体感应系统调控生物抗癌药物的释放,充分发挥益生菌对肿瘤的靶向以及可持续无创治疗优势。此外,此类益生菌给药系统还可以与其他治疗方式联合使用,在保证治疗效率的同时减少副作用。

Din等[65]设计了一种受同步裂解通路控制的工程菌,利用Lux群体感应与噬菌体裂解基因相耦联,在种群密度达到阈值时多数细菌同步裂解菌体向癌细胞释放药物血溶素E,少数细菌不裂解而繁殖至下次给药,在控制细菌种群密度可控的情况下,降低全身炎症反应的可能性,达到了比传统化疗持续性更长、更温和的治疗效果。Hauk等[66]通过将阿拉伯糖启动子与AI-2作为自诱导物的LasR/LasI群感系统相关元件的重新排列,设计出了利用双线处理逻辑即可在复杂环境中发挥相对稳定功能的同源群体感应调节通路,于E.coli菌株中成功表达和分泌人粒细胞-巨噬细胞集落刺激因子(GM-CSF),使智能益生菌新型给药系统的发展更进一步。

然而,细菌的临床使用仍面临着潜在的免疫原性和安全性等问题,为通过合成生物学的方法模拟细菌的结构和功能,Zhong等[67]探索了一种由多功能肽树枝状大分子和多糖合成的细菌纳米仿制体,在模拟细菌肿瘤靶向性以及瘤内穿透性的同时,将光激活剂结合于树枝状大分子的核心,并通过光诱导释放抗癌药物,从而实现了对细菌纳米仿制体抗肿瘤作用的调控。随着检测阈值的提高以及给药系统安全性的优化,合成生物学在医学领域将会越来越多地得到应用。

4 展望

作为21世纪的新兴学科,合成生物学于近几年发展迅速。目前,合成生物学家对常用群体感应系统元件的研究已经相对清晰,利用细菌群体感应中的多样性系统可抑制或激活目的基因的表达,从而按照特定的意愿对菌群行为进行精准动态调控。本文详细综述了细菌群体感应正交性元件及系统的筛选与设计,以及细菌群体感应系统在生物基化学品生产领域、生物电化学系统和医学领域中的应用(图2),深入归纳了群体感应系统与多种技术手段相结合的研究进展。然而,细菌群体感应的应用还有许多有待开发的方面。

图2

图2   利用群体感应系统调控工程菌在生物基化学品生产、生物电化学转化以及医学领域的应用

Fig.2   Application of quorum sensing system to control engineering bacteria in biochemical production, bioelectrochemical transformation and medical fields

Design engineering bacteria through the mutual combination of orthogonality quorum sensing system, quorum sensing system and a variety of technology combined with the exquisite design sense of self-induced substances, light, heat, metal ions, nucleic acid, antibodies and other signals, express the corresponding characters. (1) In the field of biochemistry production: dynamically regulate population density, inhibit the pathway of substrate conversion to non-target metabolites, so as to maximize substrate utilization; (2) In the field of bioelectrochemistry: induction and enhancement of group sensing system through electrical signals; (3) In the field of biomedicine: through the activation of visual signals for the detection of diseases, the construction of a new drug delivery system based on the characteristics of engineering bacteria


(1)现有的微生物工程联合体通常于一个细胞内应用不超过2个多细胞通信系统进行调控。正交性群体感应系统的快速发展以及新型群体感应自诱导物的发现与深入研究,促进了合成生物学家对多细胞系统行为进行探索,无论是细菌-细菌的种群关系,还是细菌-真菌混合感染的详细原理,抑或是细胞-细菌的新型监测治疗系统,都在研究人员的一步步实验中深入开发,为未来更精准调控多信号输入与输出的复杂通路奠定了基础。

(2)随着合成生物学与系统生物学以及生物信息学等学科相互间的交融逐渐深入,对群体感应系统中关键元件的筛选日益精确,相应的数据库逐步得以建立与完善。因此,对数据库中各元件具体性能的验证,也成为合成生物学发展之路上不可或缺的阶段之一。近年来,无细胞系统在合成生物学领域的使用频率大幅增加,可以有效地缩短实验验证的周期。同时,人工细胞模拟物的应用,不仅可以模仿细菌对环境信号的响应,更能人为地设计出不同于天然群体感应系统中存在的自诱导物。随着人工自诱导物设计的逐步发展,各调控通路间的干扰程度有望得到极大的控制。

(3)新型群体感应系统及自诱导物的发现与深入研究,将会为提供更广阔的通路设计空间。同时,细菌群体感应对菌株内各代谢通路的影响仍有待深入研究,通过对二者间关系的进一步研究,合成生物学家有望利用对多种代谢通路的分别调控,达到更精准控制工程菌中资源分配的目的。

在不远的将来,随着生物医疗工程和代谢工程的发展,通过设计正交群体感应系统与多种传感系统的结合,有望在生物基化学品生产和医学领域探索出实时检测与调控的高效传感器,进一步挖掘群体感应系统的应用潜力。

参考文献

Yi L, Dong X, Grenier D, et al.

Research progress of bacterial quorum sensing receptors: Classification, structure, function and characteristics

Science of the Total Environment, 2021, 763:143031.

URL     [本文引用: 2]

Nealson K H, Platt T, Hastings J W.

Cellular control of the synthesis and activity of the bacterial luminescent system

Journal of Bacteriology, 1970, 104(1):313-322.

PMID:5473898      [本文引用: 1]

In bioluminescent bacteria growing in shake flasks, the enzyme luciferase has been shown to be synthesized in a relatively short burst during the period of exponential growth. The luciferase gene appears to be completely inactive in a freshly inoculated culture; the pulse of preferential luciferase synthesis which occurs later is the consequence of its activation at the level of deoxyribonucleic acid transcription which is attributed to an effect of a "conditioning" of the medium by the growing of cells. Although cells grown in a minimal medium also exhibit a similar burst of synthesis of the luminescent system, the amount of synthesis is quantitatively less, relative to cell mass. Under such conditions, added arginine results in a striking stimulation of bioluminescence. This is attributed to a stimulation of existing patterns of synthesis and not to induction or derepression per se.

Li Z J, Rosenbaum M A, Venkataraman A, et al.

Bacteria-based AND logic gate: a decision-making and self-powered biosensor

Chemical Communications, 2011, 47(11):3060.

URL     [本文引用: 1]

Taylor A F, Tinsley M R, Wang F, et al.

Dynamical quorum sensing and synchronization in large populations of chemical oscillators

Science, 2009, 323(5914):614-617.

URL     [本文引用: 1]

Kim M K, Zhao A S, Wang A, et al.

Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development

Nature Microbiology, 2017, 2:17080.

URL     [本文引用: 1]

Swem L R, Swem D L, O’Loughlin C T, et al.

A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity

Molecular Cell, 2009, 35(2):143-153.

PMID:19647512      [本文引用: 1]

Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene expression changes. Here, we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development.

Minogue T D, Trebra M W V, Bernhard F, et al.

The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function

Molecular Microbiology, 2002, 44(6):1625-1635.

URL     [本文引用: 1]

Banerjee G, Ray A K.

Quorum-sensing network-associated gene regulation in Gram-positive bacteria

Acta Microbiologica et Immunologica Hungarica, 2017, 64(4):439-453.

PMID:29243493      [本文引用: 1]

Quorum sensing (QS) is the chemical communication processes between bacteria, which may be inter-genus or intra-genus. In general, several physiological functions, such as nutrient uptake, competence development, biofilm formation, sporulation, and toxin secretion, are accomplished through QS process. The QS (cell density-dependent process) circuit in Gram-positive bacteria consists mainly of two parts: an inducer molecule and a receptor protein. The binding of inducer molecule to receptor activates the target gene, which then performs the necessary function in bacteria. In the past few years, several investigations have been conducted to explore the QS circuit in various bacteria, but still this information is insufficient to fully understand the bacterial gene expression cascade. In the present review, we summarize the QS architecture and their associated gene regulation in four Gram-positive bacteria, such as Bacillus subtilis, Staphylococcus aureus, Bacillus cereus, and Streptococcus pneumoniae. It is well established that S. aureus, B. cereus, and S. pneumoniae are potent human pathogen. A detailed understanding of QS circuit in these bacteria would be useful in preparation of customized medicine in future. Whereas, B. subtilis is an industrially important candidate and has been used in several biotechnology sectors. Understanding of QS circuit in B. subtilis will definitely enrich the antibiotics and enzyme industries.

Xavier K B, Bassler B L.

Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli

Journal of Bacteriology, 2005, 187(1):238-248.

URL     [本文引用: 1]

Holoidovsky L, Meijler M M.

Synthesis and evaluation of indole-based autoinducers on quorum sensing in Vibrio cholerae

ACS Infectious Diseases, 2020, 6(4):572-576.

PMID:32182033      [本文引用: 1]

() uses the autoinducer CAI-1 (cholera autoinducer 1) and several linked quorum sensing systems in order to efficiently sense its ever-changing environment and optimally coordinate population-wide gene expression. Indole has been reported as an important signal that is sensed by, and here, we report the synthesis and evaluation of a focused library of synthetic indole-CAI-1 derivatives as tools to probe quorum sensing (QS) in this human pathogen. Our results show interesting and diverging effects for several conjugates, as compared to CAI-1, on virulence factor production and biofilm formation.

Sperandio V, Torres A G, Jarvis B, et al.

Bacteria-host communication: the language of hormones

PNAS, 2003, 100(15):8951-8956.

PMID:12847292      [本文引用: 1]

The interbacterial communication system known as quorum sensing (QS) utilizes hormone-like compounds referred to as autoinducers to regulate bacterial gene expression. Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is the agent responsible for outbreaks of bloody diarrhea in several countries. We previously proposed that EHEC uses a QS regulatory system to "sense" that it is within the intestine and activate genes essential for intestinal colonization. The QS system used by EHEC is the LuxS/autoinducer 2 (AI-2) system extensively involved in interspecies communication. The autoinducer AI-2 is a furanosyl borate diester whose synthesis depends on the enzyme LuxS. Here we show that an EHEC luxS mutant, unable to produce the bacterial autoinducer, still responds to a eukaryotic cell signal to activate expression of its virulence genes. We have identified this signal as the hormone epinephrine and show that beta- and alpha-adrenergic antagonists can block the bacterial response to this hormone. Furthermore, using purified and in vitro synthesized AI-2 we showed that AI-2 is not the autoinducer involved in the bacterial signaling. EHEC produces another, previously undescribed autoinducer (AI-3) whose synthesis depends on the presence of LuxS. These results imply a potential cross-communication between the luxS/AI-3 bacterial QS system and the epinephrine host signaling system. Given that eukaryotic cell-to-cell signaling typically occurs through hormones, and that bacterial cell-to-cell signaling occurs through QS, we speculate that QS might be a "language" by which bacteria and host cells communicate.

Hobom B.

Genchirurgie: an der Schwelle zur synthetischen biologie (Gene surgery: on the threshold of synthetic biology)

Med Klin, 1980, 75(24):834-841.

PMID:6160378      [本文引用: 1]

Keller E F.

What does synthetic biology have to do with biology?

BioSocieties, 2009, 4(2-3):291-302.

URL     [本文引用: 1]

Basu S, Mehreja R, Thiberge S, et al.

Spatiotemporal control of gene expression with pulse-generating networks

PNAS, 2004, 101(17):6355-6360.

URL     [本文引用: 1]

Stricker J, Cookson S, Bennett M R, et al.

A fast, robust and tunable synthetic gene oscillator

Nature, 2008, 456(7221):516-519.

URL     [本文引用: 1]

Hu Y D, Yang Y, Katz E, et al.

Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells

Chemical Communications (Cambridge, England), 2015, 51(20):4184-4187.

URL     [本文引用: 1]

Andrianantoandro E, Basu S, Karig D K, et al.

Synthetic biology: new engineering rules for an emerging discipline

Molecular Systems Biology, 2006, 2: 2006.0028.

[本文引用: 1]

Chowdhury S, Castro S, Coker C, et al.

Programmable bacteria induce durable tumor regression and systemic antitumor immunity

Nature Medicine, 2019, 25(7):1057-1063.

PMID:31270504      [本文引用: 1]

Synthetic biology is driving a new era of medicine through the genetic programming of living cells. This transformative approach allows for the creation of engineered systems that intelligently sense and respond to diverse environments, ultimately adding specificity and efficacy that extends beyond the capabilities of molecular-based therapeutics. One particular area of focus has been the engineering of bacteria as therapeutic delivery systems to selectively release therapeutic payloads in vivo. Here we engineered a non-pathogenic Escherichia coli strain to specifically lyse within the tumor microenvironment and release an encoded nanobody antagonist of CD47 (CD47nb), an anti-phagocytic receptor that is commonly overexpressed in several human cancer types. We show that delivery of CD47nb by tumor-colonizing bacteria increases activation of tumor-infiltrating T cells, stimulates rapid tumor regression, prevents metastasis and leads to long-term survival in a syngeneic tumor model in mice. Moreover, we report that local injection of CD47nb-expressing bacteria stimulates systemic tumor-antigen-specific immune responses that reduce the growth of untreated tumors, providing proof-of-concept for an abscopal effect induced by an engineered bacterial immunotherapy. Thus, engineered bacteria may be used for safe and local delivery of immunotherapeutic payloads leading to systemic antitumor immunity.

Saeidi N, Wong C K, Lo T M, et al.

Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen

Molecular Systems Biology, 2011, 7:521.

URL     [本文引用: 1]

Miller E L, Kjos M, Abrudan M I, et al.

Eavesdropping and crosstalk between secreted quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae

The ISME Journal, 2018, 12(10):2363-2375.

URL     [本文引用: 1]

Li L, Wei K K, Liu X C, et al.

aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes

Metabolic Engineering, 2019, 52:153-167.

URL     [本文引用: 1]

Sung L Y, Wu M Y, Lin M W, et al.

Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli

Biotechnology and Bioengineering, 2019, 116(5):1066-1079.

PMID:30636321      [本文引用: 1]

CRISPR utilizing Cas9 from Streptococcus pyogenes (SpCas9) and CRISPR interference (CRISPRi) employing catalytically inactive SpCas9 (SpdCas9) have gained popularity for Escherichia coli engineering. To integrate the SpdCas9-based CRISPRi module using CRISPR while avoiding mutual interference between SpCas9/SpdCas9 and their cognate single-guide RNA (sgRNA), this study aimed at exploring an alternative Cas nuclease orthogonal to SpCas9. We compared several Cas9 variants from different microorganisms such as Staphylococcus aureus (SaCas9) and Streptococcus thermophilius CRISPR1 (St1Cas9) as well as Cas12a derived from Francisella novicida (FnCas12a). At the commonly used E. coli model genes LacZ, we found that SaCas9 and St1Cas9 induced DNA cleavage more effectively than FnCas12a. Both St1Cas9 and SaCas9 were orthogonal to SpCas9 and the induced DNA cleavage promoted the integration of heterologous DNA of up to 10 kb, at which size St1Cas9 was superior to SaCas9 in recombination frequency/accuracy. We harnessed the St1Cas9 system to integrate SpdCas9 and sgRNA arrays for constitutive knockdown of three genes, knock-in pyc and knockout adhE, without compromising the CRISPRi knockdown efficiency. The combination of orthogonal CRISPR/CRISPRi for metabolic engineering enhanced succinate production while inhibiting byproduct formation and may pave a new avenue to E. coli engineering.© 2019 Wiley Periodicals, Inc.

Du P, Zhao H W, Zhang H Q, et al.

De novo design of an intercellular signaling toolbox for multi-channel cell-cell communication and biological computation

Nature Communications, 2020, 11:4226.

URL     [本文引用: 1]

Halleran A D, Murray R M.

Cell-free and in vivo characterization of lux, Las, and rpa quorum activation systems in E. coli

ACS Synthetic Biology, 2018, 7(2):752-755.

PMID:29120612      [本文引用: 1]

Synthetic biologists have turned toward quorum systems as a path for building sophisticated microbial consortia that exhibit group decision making. Currently, however, even the most complex consortium circuits rely on only one or two quorum sensing systems, greatly restricting the available design space. High-throughput characterization of available quorum sensing systems is useful for finding compatible sets of systems that are suitable for a defined circuit architecture. Recently, cell-free systems have gained popularity as a test-bed for rapid prototyping of genetic circuitry. We take advantage of the transcription-translation cell-free system to characterize three commonly used Lux-type quorum activators, Lux, Las, and Rpa. We then compare the cell-free characterization to results obtained in vivo. We find significant genetic crosstalk in both the Las and Rpa systems and substantial signal crosstalk in Lux activation. We show that cell-free characterization predicts crosstalk observed in vivo.

Kylilis N, Tuza Z A, Stan G B, et al.

Tools for engineering coordinated system behaviour in synthetic microbial consortia

Nature Communications, 2018, 9:2677.

URL     [本文引用: 1]

Zeng W Q, Du P, Lou Q L, et al.

Rational design of an ultrasensitive quorum-sensing switch

ACS Synthetic Biology, 2017, 6(8):1445-1452.

URL     [本文引用: 1]

Chubukov V, Gerosa L, Kochanowski K, et al.

Coordination of microbial metabolism

Nature Reviews Microbiology, 2014, 12(5):327-340.

PMID:24658329      [本文引用: 1]

Beyond fuelling cellular activities with building blocks and energy, metabolism also integrates environmental conditions into intracellular signals. The underlying regulatory network is complex and multifaceted: it ranges from slow interactions, such as changing gene expression, to rapid ones, such as the modulation of protein activity via post-translational modification or the allosteric binding of small molecules. In this Review, we outline the coordination of common metabolic tasks, including nutrient uptake, central metabolism, the generation of energy, the supply of amino acids and protein synthesis. Increasingly, a set of key metabolites is recognized to control individual regulatory circuits, which carry out specific functions of information input and regulatory output. Such a modular view of microbial metabolism facilitates an intuitive understanding of the molecular mechanisms that underlie cellular decision making.

Terrell J L, Wu H C, Tsao C Y, et al.

Nano-guided cell networks as conveyors of molecular communication

Nature Communications, 2015, 6:8500.

URL     [本文引用: 1]

Osmekhina E, Jonkergouw C, Schmidt G, et al.

Controlled communication between physically separated bacterial populations in a microfluidic device

Communications Biology, 2018, 1:97.

URL     [本文引用: 1]

Ha J H, Hauk P, Cho K, et al.

Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr

Science Advances, 2018, 4(6): eaar7063.

[本文引用: 1]

Stephens K, Pozo M, Tsao C Y, et al.

Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition

Nature Communications, 2019, 10:4129.

URL     [本文引用: 1]

Gilbert L A, Horlbeck M A, Adamson B, et al.

Genome-scale CRISPR-mediated control of gene repression and activation

Cell, 2014, 159(3):647-661.

PMID:25307932      [本文引用: 1]

While the catalog of mammalian transcripts and their expression levels in different cell types and disease states is rapidly expanding, our understanding of transcript function lags behind. We present a robust technology enabling systematic investigation of the cellular consequences of repressing or inducing individual transcripts. We identify rules for specific targeting of transcriptional repressors (CRISPRi), typically achieving 90%-99% knockdown with minimal off-target effects, and activators (CRISPRa) to endogenous genes via endonuclease-deficient Cas9. Together they enable modulation of gene expression over a ∼1,000-fold range. Using these rules, we construct genome-scale CRISPRi and CRISPRa libraries, each of which we validate with two pooled screens. Growth-based screens identify essential genes, tumor suppressors, and regulators of differentiation. Screens for sensitivity to a cholera-diphtheria toxin provide broad insights into the mechanisms of pathogen entry, retrotranslocation and toxicity. Our results establish CRISPRi and CRISPRa as powerful tools that provide rich and complementary information for mapping complex pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

Liu Y L, Chen J J, Crisante D, et al.

Dynamic cell programming with quorum sensing-controlled CRISPRi circuit

ACS Synthetic Biology, 2020, 9(6):1284-1291.

URL     [本文引用: 2]

Alnahhas R N, Sadeghpour M, Chen Y, et al.

Majority sensing in synthetic microbial consortia

Nature Communications, 2020, 11(1):1-10.

URL     [本文引用: 1]

Jiang W, He X Y, Luo Y, et al.

Two completely orthogonal quorum sensing systems with self-produced autoinducers enable automatic delayed cascade control

ACS Synthetic Biology, 2020, 9(9):2588-2599.

PMID:32786361      [本文引用: 1]

The existence of crosstalk between quorum sensing systems limits their application in a complex environment. In this study, two completely orthogonal quorum sensing systems with self-produced autoinducers were built in one cell to enable the systems to be signal orthogonal and promoter orthogonal to each other. The systems were designed on the basis of the las system from and the tra system from. Both were optimized with respect to the orthogonality of signals and promoters by using a series of synthetic biology strategies and high-throughput screening. The systems were applied intracellularly, and an automatic delayed cascade circuit was successfully demonstrated, which can realize sequential gene expression without exogenous inducer. This circuit provides a new tool for biotechnological applications, such as metabolic regulation, that require sequential gene control. This cascade model expands the toolkit of synthetic biology research and indicates a high application potential of quorum sensing systems that are orthogonal to each other.

Niederholtmeyer H, Chaggan C, Devaraj N K.

Communication and quorum sensing in non-living mimics of eukaryotic cells

Nature Communications, 2018, 9:5027.

PMID:30487584      [本文引用: 1]

Cells in tissues or biofilms communicate with one another through chemical and mechanical signals to coordinate collective behaviors. Non-living cell mimics provide simplified models of natural systems; however, it has remained challenging to implement communication capabilities comparable to living cells. Here we present a porous artificial cell-mimic containing a nucleus-like DNA-hydrogel compartment that is able to express and display proteins, and communicate with neighboring cell-mimics through diffusive protein signals. We show that communication between cell-mimics allows distribution of tasks, quorum sensing, and cellular differentiation according to local environment. Cell-mimics can be manufactured in large quantities, easily stored, chemically modified, and spatially organized into diffusively connected tissue-like arrangements, offering a means for studying communication in large ensembles of artificial cells.

Wu J J, Bao M J, Duan X G, et al.

Developing a pathway-independent and full-autonomous global resource allocation strategy to dynamically switching phenotypic states

Nature Communications, 2020, 11:5521.

URL     [本文引用: 1]

Bao S H, Li W Y, Liu C J, et al.

Quorum-sensing based small RNA regulation for dynamic and tuneable gene expression

Biotechnology Letters, 2019, 41(10):1147-1154.

URL     [本文引用: 1]

Gupta A, Reizman I M B, Reisch C R, et al.

Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit

Nature Biotechnology, 2017, 35(3):273-279.

URL     [本文引用: 1]

Doong S J, Gupta A, Prather K L J.

Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli

PNAS, 2018, 115(12):2964-2969.

URL     [本文引用: 1]

Liu Y, Li J Y, Tschirhart T, et al.

Connecting biology to electronics: molecular communication via redox modality

Advanced Healthcare Materials, 2017, 6(24):1700789.

URL     [本文引用: 1]

Kaberniuk A A, Shemetov A A, Verkhusha V V.

A bacterial phytochrome-based optogenetic system controllable with near-infrared light

Nature Methods, 2016, 13(7):591-597.

PMID:27159085      [本文引用: 1]

Light-mediated control of protein-protein interactions to regulate cellular pathways is an important application of optogenetics. Here, we report an optogenetic system based on the reversible light-induced binding between the bacterial phytochrome BphP1 and its natural partner PpsR2 from Rhodopseudomonas palustris bacteria. We extensively characterized the BphP1-PpsR2 interaction both in vitro and in mammalian cells and then used this interaction to translocate target proteins to specific cellular compartments, such as the plasma membrane and the nucleus. We showed light-inducible control of cell morphology that resulted in a substantial increase of the cell area. We demonstrated light-dependent gene expression with 40-fold contrast in cultured cells, 32-fold in subcutaneous mouse tissue, and 5.7-fold in deep tissues in mice. Characteristics of the BphP1-PpsR2 optogenetic system include its sensitivity to 740- to 780-nm near-infrared light, its ability to utilize an endogenous biliverdin chromophore in eukaryotes (including mammals), and its spectral compatibility with blue-light-driven optogenetic systems.

Pudasaini A, El-Arab K K, Zoltowski B D.

LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling

Frontiers in Molecular Biosciences, 2015, 2:18.

PMID:25988185      [本文引用: 1]

The Light-Oxygen-Voltage domain family of proteins is widespread in biology where they impart sensory responses to signal transduction domains. The small, light responsive LOV modules offer a novel platform for the construction of optogenetic tools. Currently, the design and implementation of these devices is partially hindered by a lack of understanding of how light drives allosteric changes in protein conformation to activate diverse signal transduction domains. Further, divergent photocycle properties amongst LOV family members complicate construction of highly sensitive devices with fast on/off kinetics. In the present review we discuss the history of LOV domain research with primary emphasis on tuning LOV domain chemistry and signal transduction to allow for improved optogenetic tools.

Dixon T A, Williams T C, Pretorius I S.

Sensing the future of bio-informational engineering

Nature Communications, 2021, 12(1):388.

URL     [本文引用: 1]

Gu M Z, Imlay J A.

The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide

Molecular Microbiology, 2011, 79(5):1136-1150.

URL     [本文引用: 1]

Tschirhart T, Kim E, McKay R, et al.

Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling

Nature Communications, 2017, 8:14030.

PMID:28094788      [本文引用: 2]

The ability to interconvert information between electronic and ionic modalities has transformed our ability to record and actuate biological function. Synthetic biology offers the potential to expand communication 'bandwidth' by using biomolecules and providing electrochemical access to redox-based cell signals and behaviours. While engineered cells have transmitted molecular information to electronic devices, the potential for bidirectional communication stands largely untapped. Here we present a simple electrogenetic device that uses redox biomolecules to carry electronic information to engineered bacterial cells in order to control transcription from a simple synthetic gene circuit. Electronic actuation of the native transcriptional regulator SoxR and transcription from the PsoxS promoter allows cell response that is quick, reversible and dependent on the amplitude and frequency of the imposed electronic signals. Further, induction of bacterial motility and population based cell-to-cell communication demonstrates the versatility of our approach and potential to drive intricate biological behaviours.

Bhokisham N, VanArsdale E, Stephens K T, et al.

A redox-based electrogenetic CRISPR system to connect with and control biological information networks

Nature Communications, 2020, 11:2427.

URL     [本文引用: 1]

VanArsdale E, Hörnström D, Sjöberg G, et al.

A coculture based tyrosine-tyrosinase electrochemical gene circuit for connecting cellular communication with electronic networks

ACS Synthetic Biology, 2020, 9(5):1117-1128.

PMID:32208720      [本文引用: 1]

There is a growing interest in mediating information transfer between biology and electronics. By the addition of redox mediators to various samples and cells, one can both electronically obtain a redox "portrait" of a biological system and, conversely, program gene expression. Here, we have created a cell-based synthetic biology-electrochemical axis in which engineered cells process molecular cues, producing an output that can be directly recorded via electronics-but without the need for added redox mediators. The process is robust; two key components must act together to provide a valid signal. The system builds on the tyrosinase-mediated conversion of tyrosine to L-DOPA and L-DOPAquinone, which are both redox active. "Catalytic" transducer cells provide for signal-mediated surface expression of tyrosinase. Additionally, "reagent" transducer cells synthesize and export tyrosine, a substrate for tyrosinase. In cocultures, this system enables real-time electrochemical transduction of cell activating molecular cues. To demonstrate, we eavesdrop on quorum sensing signaling molecules that are secreted by, -(3-oxododecanoyl)-l-homoserine lactone and pyocyanin.

Stephens K, Zakaria F R, VanArsdale E, et al.

Electronic signals are electrogenetically relayed to control cell growth and co-culture composition

Metabolic Engineering Communications, 2021, 13:e00176.

URL     [本文引用: 1]

Terrell J L, Tschirhart T, Jahnke J P, et al.

Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals

Nature Nanotechnology, 2021, 16(6):688-697.

URL     [本文引用: 1]

Miller C, Gilmore J.

Detection of quorum-sensing molecules for pathogenic molecules using cell-based and cell-free biosensors

Antibiotics, 2020, 9(5):259.

URL     [本文引用: 1]

Cao H L, Xia T Y, Li Y R, et al.

Uncoupled quorum sensing modulates the interplay of virulence and resistance in a multidrug-resistant clinical Pseudomonas aeruginosa isolate belonging to the MLST550 clonal complex

Antimicrobial Agents and Chemotherapy, 2019, 63(4):e01944-e01918.

[本文引用: 1]

Wen K Y, Cameron L, Chappell J, et al.

A cell-free biosensor for detecting quorum sensing molecules in P. aeruginosa-infected respiratory samples

ACS Synthetic Biology, 2017, 6(12):2293-2301.

URL     [本文引用: 1]

Mimee M, Nadeau P, Hayward A, et al.

An ingestible bacterial-electronic system to monitor gastrointestinal health

Science, 2018, 360(6391):915-918.

PMID:29798884      [本文引用: 1]

Biomolecular monitoring in the gastrointestinal tract could offer rapid, precise disease detection and management but is impeded by access to the remote and complex environment. Here, we present an ingestible micro-bio-electronic device (IMBED) for in situ biomolecular detection based on environmentally resilient biosensor bacteria and miniaturized luminescence readout electronics that wirelessly communicate with an external device. As a proof of concept, we engineer heme-sensitive probiotic biosensors and demonstrate accurate diagnosis of gastrointestinal bleeding in swine. Additionally, we integrate alternative biosensors to demonstrate modularity and extensibility of the detection platform. IMBEDs enable new opportunities for gastrointestinal biomarker discovery and could transform the management and diagnosis of gastrointestinal disease.Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Lohse M B, Gulati M, Johnson A D, et al.

Development and regulation of single- and multi-species Candida albicans biofilms

Nature Reviews Microbiology, 2018, 16(1):19-31.

URL     [本文引用: 1]

Yin S L, Chang Y J, Deng S P, et al.

Screening and identification of marine fungi against bacterial quorum sensing

Chin J Biotech, 2011, 27(9):1337-1346.

[本文引用: 1]

Bachtiar E W, Bachtiar B M, Jarosz L M, et al.

AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation

Frontiers in Cellular and Infection Microbiology, 2014, 4:94.

PMID:25101248      [本文引用: 1]

Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (Al-2), synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of Al-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. acnnomycetemcomitans luxS, lacking Al-2 production. Addition of wild-type-derived spent medium or synthetic Al-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic Al-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. Al-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities.

Zhang B Z, Ku X G, Zhang X Q, et al.

The AI-2/luxS quorum sensing system affects the growth characteristics, biofilm formation, and virulence of Haemophilus parasuis

Frontiers in Cellular and Infection Microbiology, 2019, 9:62.

URL     [本文引用: 1]

Fan X, Peng P C, Huang H, et al.

Undesirable effects of exogenous N-acyl homoserine lactones on moving bed biofilm reactor treating medium-strength synthetic wastewater

Science of the Total Environment, 2019, 696:134061.

URL     [本文引用: 1]

Bandara H M H N, Hewavitharana A K, Shaw P N, et al.

A novel, quorum sensor-infused liposomal drug delivery system suppresses Candida albicans biofilms

International Journal of Pharmaceutics, 2020, 578:119096.

PMID:32006626      [本文引用: 1]

In contrast to the plethora of antibacterial agents, only a handful of antifungals are currently available to treat Candida albicans biofilm-associated infections. Additional novel antibiofilm strategies to eliminate C. albicans biofilm infections are needed. This study aims to improve the efficacy of a widely used azole, fluconazole by co-delivering it with a Pseudomonas aeruginosa quorum sensing molecule (QSM), N-3-oxo-dodecanoyl-L-homoserine lactone (C12AHL) in a liposomal formulation. C12AHL is known to inhibit C. albicans' morphological transition and biofilm formation. Four different formulations of liposomes with fluconazole (L-F), with C12AHL (L-H), with fluconazole and C12AHL (L-HF), and a drug-free control (L-C) were prepared using a thin-film hydration followed by extrusion method, and characterised. The effect of liposomes on colonising (90 min-24 h) and preformed (24 h) C. albicans biofilms were assessed using a standard biofilm assay. Biofilm viability (XTT reduction assay), biomass (Safranin-O staining) and architecture (confocal laser scanning microscopy, CLSM) were determined. Similar efficiencies of fluconazole entrapment were noticed in L-HF and L-F (11.74% vs 10.2%), however, L-HF released greater quantities of fluconazole compared to L-F during 24 h (4.27% vs 0.97%, P < 0.05). The entrapment and release of C12AHL was similar for L-H and L-HF liposomes (33.3% vs 33% and 88.9% vs 92.3% respectively). L-HF treated colonising, and preformed biofilms exhibited >80%, and 60% reduction in their respective viabilities at a fluconazole concentration as low as 5.5 µg/mL compared to 12% and 36%, respective reductions observed in L-F treated biofilms (P < 0.05). CLSM confirmed biofilm disruption, lack of hyphae, and reduction in biomass when treated with L-HF compared to other liposomal preparations. Liposomal co-delivery of C12AHL and fluconazole appears to suppress C. albicans biofilms through efficacious disruption of the biofilm, killing of constituent yeasts, and diminishing their virulence at a significantly lower antifungal dose. Therefore, liposomal co-formulation of C12AHL and fluconazole appears to be a promising approach to improve the efficacy of this common triazole against biofilm-mediated candidal infections.Copyright © 2020 Elsevier B.V. All rights reserved.

Sedlmayer F, Hell D, Müller M, et al.

Designer cells programming quorum-sensing interference with microbes

Nature Communications, 2018, 9(1):1822.

URL     [本文引用: 1]

Tham E H, Koh E, Common J E A, et al.

Biotherapeutic approaches in atopic dermatitis

Biotechnology Journal, 2020, 15(10):e1900322.

[本文引用: 1]

Piewngam P, Zheng Y, Nguyen T H, et al.

Pathogen elimination by probiotic Bacillus via signalling interference

Nature, 2018, 562(7728):532-537.

URL     [本文引用: 1]

Danino T, Prindle A, Kwong G A, et al.

Programmable probiotics for detection of cancer in urine

Science Translational Medicine, 2015, 7(289): 289ra84.

[本文引用: 1]

Din M O, Danino T, Prindle A, et al.

Synchronized cycles of bacterial Lysis for in vivo delivery

Nature, 2016, 536(7614):81-85.

URL     [本文引用: 1]

Hauk P, Stephens K, Virgile C, et al.

Homologous quorum sensing regulatory circuit: a dual-input genetic controller for modulating quorum sensing-mediated protein expression in E. coli

ACS Synth Biol, 2020, 9(10):2692-2702.

URL     [本文引用: 1]

Zhong D, Xu X H, Li Y K, et al.

Entirely synthetic bacterial nanomimics for highly-effective tumor suppression and immune elicitation

Nano Today, 2020, 35:100950.

URL     [本文引用: 1]

/