Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (10): 20-31    DOI: 10.13523/j.cb.2305046
    
Rational Design and Establishment of CHO Cell Intensified Fed-batch Culture Process
SU Ying1,ZHANG Wei-jian1,WAN Yu-xiang2,SHEN Tian-fang2,ZHANG Xin-ran1,ZHANG Ru-yue1,TAN Wen-song1,3,ZHAO Liang1,3,*()
1 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
2 Zhejiang Hisun Pharmaceutical Co., Ltd., Hangzhou 311404, China
3 Shanghai Bioengine Sci-Tech Co., Ltd., Shanghai 201203, China
Download: HTML   PDF(1224KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Due to the higher seeding density and running density of the intensified fed-batch of ultra-high seeding density (uHSD-IFB) process, the feeding strategy of the traditional low-density culture process often does not provide sufficient nutrients for cell maintenance and product expression of the process, which ultimately leads to low process yield and lower production efficiency. By optimizing the feed medium and feeding strategy, the uHSD-IFB process will be successfully established and the target protein yield will be increased. Methods: A monoclonal antibody-expressing CHO-K1 cell line was studied in this paper, a two-stage dynamic feedback feeding strategy with glucose as the control indicator was designed by metabolic kinetics and stoichiometry analysis, and the nutrient concentrations for key trace elements in the feed medium were screened and optimized in combination with design of experiment (DoE). Results: The optimized process effectively alleviated the contradiction between nutrient depletion and accumulation of metabolic by-products in the uHSD-IFB process and achieved the purpose of cell growth and product synthesis in the ultra-high inoculation density culture process. The cumulative titer of the optimized design of the uHSD-IFB process was increased by 95% and the daily yield was increased by about 97% compared to that before optimization. Conclusion: This proposed feeding strategy can provide help to rapidly establish an enhanced fed-batch culture process of ultra-high seeding density with high cell density and high product expression.



Key wordsCHO cell      Process intensification      Dynamic feedback fed-batch      Rational design      Glucose control model     
Received: 30 May 2023      Published: 02 November 2023
ZTFLH:  Q813  
Cite this article:

SU Ying, ZHANG Wei-jian, WAN Yu-xiang, SHEN Tian-fang, ZHANG Xin-ran, ZHANG Ru-yue, TAN Wen-song, ZHAO Liang. Rational Design and Establishment of CHO Cell Intensified Fed-batch Culture Process. China Biotechnology, 2023, 43(10): 20-31.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2305046     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I10/20

氨基酸 0~4 d的浓度
/(mmol·L-1)
5~8 d的浓度
/(mmol·L-1)
氨基酸 0~4 d的浓度
/(mmol·L-1)
5~8 d的浓度
/(mmol·L-1)
天冬氨酸 72.02 29.22 酪氨酸 39.17 23.88
谷氨酸 81.12 81.7 胱氨酸 49.32 31.45
天冬酰胺 100.43 91.03 缬氨酸 114.1 69.02
丝氨酸 136.98 93.59 甲硫氨酸 29.31 14.25
脯氨酸 43.2 43.2 色氨酸 16.93 17.39
组氨酸 41.47 19.59 苯丙氨酸 26.21 37.6
苏氨酸 64.09 50.11 异亮氨酸 61.1 40.16
精氨酸 46.85 19.25 亮氨酸 78.2 65.01
丙氨酸 23.6 23.6 赖氨酸 46.76 69.02
Table 1 Glucose control model for amino acid concentrations in feed medium during uHSD-IFB process
Fig.1 Rational design workflow diagram for the optimized uHSD-IFB process
Fig.2 Comparison of cell growth and protein production in traditional and intensified fed-batch process (a) Viable cell density and viability (b) Titer and Vp
Fig.3 Concentration change of amino acids during uHSD-IFB process
Fig.4 Specific consumption (production) rate of amino acids during uHSD-IFB (AA) process
Fig.5 Relationship between cumulative consumption of amino acids and cumulative consumption of glucose in the cell growth phase and product production phase during uHSD-IFB (AA) process (a) Cell growth phase (b) Product production phase
Fig.6 Comparison of the uHSD-IFB process for the glucose control model with the uHSD-IFB process before optimization (a) Cell growth (b) Protein production (c) Glucose concentration (d) Lactate concentration
编号 物质 高水平质量浓度/(mg·L-1) 编号 物质 高水平质量浓度/(mg·L-1)
A D-泛酸钙 95.306 N 柠檬酸钠 103.228
B 氯化胆碱 55.852 O ZnSO4·7H2O 3.22
C 抗坏血酸钠 39.603 P 亚硒酸钠 0.346
D 叶酸 44.1 Q 腐胺 17.63
E 肌醇 84 R 乙醇胺盐酸盐 9.75
F 烟酰胺 12.213 S 胰岛素 11.6
G 钴胺素 13.55 T 谷胱甘肽 12.29
H 生物素 0.673 U 胸苷 9.69
J 核黄素 1.882 V α-酮戊二酸 59.44
K 盐酸吡哆醇 6.169 W 虚拟因子1 -
L CuSO4·5H2O 0.1 X 虚拟因子2 -
M FeSO4·7H2O 55.6
Table 2 Factors and levels of Plackett-Burman experiments design
因素 平方和 均方 F值 P 重要性
Model 396.84 18.9 878.62 0.001 1 Significant
A-D-泛酸钙 0.055 7 0.055 7 2.59 0.248 9 15
B-氯化胆碱 2.22 2.22 103.17 0.009 6 2
C-抗坏血酸钠 2.05 2.05 95.38 0.010 3 3
D-叶酸 0.005 3 0.005 3 0.248 3 0.667 7 21
E-I-肌醇 0.081 3 0.081 3 3.78 0.191 3 14
F-烟酰胺 0.344 2 0.344 2 16.01 0.057 2 12
G-钴胺素 1.11 1.11 51.55 0.018 9 5
H-生物素 0.661 9 0.661 9 30.78 0.031 0 7
J-核黄素 0.891 8 0.891 8 41.47 0.023 3 6
K-盐酸吡哆醇 0.040 3 0.040 3 1.88 0.304 4 16
L-五水硫酸铜 0.005 6 0.005 6 0.26 0.660 8 20
M-七水硫酸亚铁 0.008 0.008 0.371 9 0.604 0 18
N-柠檬酸钠 0.271 1 0.271 1 12.6 0.071 0 13
O-七水硫酸锌 0.353 5 0.353 5 16.43 0.055 8 11
P-亚硒酸钠 0.489 8 0.489 8 22.77 0.041 2 10
Q-腐胺 0.521 8 0.521 8 24.26 0.038 8 9
R-乙醇胺 1.33 1.33 61.99 0.015 8 4
S-胰岛素 385.74 385.74 17 935.24 < 0.000 1 1
T-谷胱甘肽 0.602 8 0.602 8 28.03 0.033 9 8
U-胸苷 0.039 6 0.039 6 1.84 0.307 6 17
V-α-酮戊二酸 0.006 0.006 0.279 4 0.649 9 19
Table 3 Variance analysis of Plackett-Burman experiments results
Parameters Traditional FB uHSD-IFB Optimized uHSD-IFB
Seeding density (106 cells/mL) 0.5 15 15
μ-Growth phase (1/day) 0.44 0.43 0.34
Peak VCD (106 cells/mL) 19.10 37.35 33.33
IVCC (109cells·day/L) 173 246 214
Feeding strategy Constant ratio Constant ratio Glucose control + DoE
Culture time (day) 14 8 8
Titer (g/L)% - 11.79±0.60 117.89±0.79
QP (pg/cell/day)% - 17.26±0.57 156.94±1.45
Vp (g/L/day)% - 95.93±4.88 255.56±1.72
Peak lactate concentration (mmol/L) 30.87 30.65 24.26
Peak osmolality (mOsm/kg) 452 586 520
Table 4 Comparison of the main results of several fed-batch processes
[1]   O’Flaherty R, Bergin A, Flampouri E, et al. Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing. Biotechnology Advances, 2020, 43: 107552.
doi: 10.1016/j.biotechadv.2020.107552
[2]   Fan Y Z, Ley D, Andersen M R. Fed-batch CHO cell culture for lab-scale antibody production. Methods in Molecular Biology, 2018, 1674: 147-161.
doi: 10.1007/978-1-4939-7312-5_12 pmid: 28921435
[3]   Lin P C, Chan K F, Kiess I A, et al. Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics. mAbs, 2019, 11(5): 965-976.
doi: 10.1080/19420862.2019.1612690
[4]   Tang P F, Xu J L, Louey A, et al. Kinetic modeling of Chinese hamster ovary cell culture: factors and principles. Critical Reviews in Biotechnology, 2020, 40(2): 265-281.
doi: 10.1080/07388551.2019.1711015 pmid: 31928250
[5]   Handlogten M W, Lee-O’Brien A, Roy G, et al. Intracellular response to process optimization and impact on productivity and product aggregates for a high-titer CHO cell process. Biotechnology and Bioengineering, 2018, 115(1): 126-138.
doi: 10.1002/bit.26460 pmid: 28941283
[6]   Kelley B, Kiss R, Laird M. A different perspective: how much innovation is really needed for monoclonal antibody production using mammalian cell technology. Advances in Biochemical Engineering/Biotechnology, 2018, 165: 443-462.
[7]   Stepper L, Filser F A, Fischer S, et al. Pre-stage perfusion and ultra-high seeding cell density in CHO fed-batch culture: a case study for process intensification guided by systems biotechnology. Bioprocess and Biosystems Engineering, 2020, 43(8): 1431-1443.
doi: 10.1007/s00449-020-02337-1 pmid: 32266469
[8]   Schulze M, Kumar Y, Rattay M, et al. Transcriptomic analysis reveals mode of action of butyric acid supplementation in an intensified CHO cell fed-batch process. Biotechnology and Bioengineering, 2022, 119(9): 2359-2373.
doi: 10.1002/bit.v119.9
[9]   Xu J L, Rehmann M S, Xu M M, et al. Development of an intensified fed-batch production platform with doubled titers using N-1 perfusion seed for cell culture manufacturing. Bioresources and Bioprocessing, 2020, 7(1): 17.
doi: 10.1186/s40643-020-00304-y
[10]   Bielser J M, Wolf M, Souquet J, et al. Perfusion mammalian cell culture for recombinant protein manufacturing: a critical review. Biotechnology Advances, 2018, 36(4): 1328-1340.
doi: 10.1016/j.biotechadv.2018.04.011
[11]   Xu S, Gavin J, Jiang R B, et al. Bioreactor productivity and media cost comparison for different intensified cell culture processes. Biotechnology Progress, 2017, 33(4): 867-878.
doi: 10.1002/btpr.2415 pmid: 27977910
[12]   Jordan M, Mac Kinnon N, Monchois V, et al. Intensification of large-scale cell culture processes. Current Opinion in Chemical Engineering, 2018, 22: 253-257.
doi: 10.1016/j.coche.2018.11.008
[13]   Yang W C, Lu J Y, Kwiatkowski C, et al. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Biotechnology Progress, 2014, 30(3): 616-625.
doi: 10.1002/btpr.1884 pmid: 24574326
[14]   Mahé A, Martiné A, Fagète S, et al. Exploring the limits of conventional small-scale CHO fed-batch for accelerated on demand monoclonal antibody production. Bioprocess and Biosystems Engineering, 2022, 45(2): 297-307.
doi: 10.1007/s00449-021-02657-w
[15]   Pohlscheidt M, Jacobs M, Wolf S, et al. Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors. Biotechnology Progress, 2013, 29(1): 222-229.
doi: 10.1002/btpr.1672 pmid: 23225663
[16]   Schulze M, Lemke J, Pollard D, et al. Automation of high CHO cell density seed intensification via online control of the cell specific perfusion rate and its impact on the N-stage inoculum quality. Journal of Biotechnology, 2021, 335: 65-75.
doi: 10.1016/j.jbiotec.2021.06.011 pmid: 34090946
[17]   Brunner M, Kolb K, Keitel A, et al. Application of metabolic modeling for targeted optimization of high seeding density processes. Biotechnology and Bioengineering, 2021, 118(5): 1793-1804.
doi: 10.1002/bit.27693 pmid: 33491766
[18]   Yongky A, Xu J L, Tian J, et al. Process intensification in fed-batch production bioreactors using non-perfusion seed cultures. mAbs, 2019, 11(8): 1502-1514.
doi: 10.1080/19420862.2019.1652075 pmid: 31379298
[19]   Padawer I, Ling W L W, Bai Y L. Case study: an accelerated 8-day monoclonal antibody production process based on high seeding densities. Biotechnology Progress, 2013, 29(3): 829-832.
doi: 10.1002/btpr.1719 pmid: 23596148
[20]   Bielser J M, Chappuis L, Xiao Y S, et al. Perfusion cell culture for the production of conjugated recombinant fusion proteins reduces clipping and quality heterogeneity compared to batch-mode processes. Journal of Biotechnology, 2019, 302: 26-31.
doi: 10.1016/j.jbiotec.2019.06.006
[21]   Hecht V, Duvar S, Ziehr H, et al. Efficiency improvement of an antibody production process by increasing the inoculum density. Biotechnology Progress, 2014, 30(3): 607-615.
doi: 10.1002/btpr.1887 pmid: 24574274
[22]   Pereira S, Kildegaard H F, Andersen M R. Impact of CHO metabolism on cell growth and protein production: an overview of toxic and inhibiting metabolites and nutrients. Biotechnology Journal, 2018, 13(3): e1700499.
[23]   Ali A S, Raju R, Kshirsagar R, et al. Multi-omics study on the impact of cysteine feed level on cell viability and mAb production in a CHO bioprocess. Biotechnology Journal, 2019, 14(4): e1800352.
[24]   范里. GS-CHO细胞无血清培养过程的开发与优化. 上海: 华东理工大学, 2010.
[24]   Fan L. Development and optimization of serum-free culture process of GS-CHO cells. Shanghai: East China University of Science and Technology, 2010.
[25]   Bai Y L, Wu C J, Zhao J, et al. Role of iron and sodium citrate in animal protein-free CHO cell culture medium on cell growth and monoclonal antibody production. Biotechnology Progress, 2011, 27(1): 209-219.
doi: 10.1002/btpr.513 pmid: 21312368
[26]   Parampalli A, Eskridge K, Smith L, et al. Developement of serum-free media in CHO-DG 44 cells using a central composite statistical design. Cytotechnology, 2007, 54(1): 57-68.
doi: 10.1007/s10616-007-9074-3 pmid: 19003018
[27]   Ritacco F V, Wu Y Q, Khetan A. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnology Progress, 2018, 34(6): 1407-1426.
doi: 10.1002/btpr.2706 pmid: 30290072
[28]   Zhang H F, Wang H B, Liu M, et al. Rational development of a serum-free medium and fed-batch process for a GS-CHO cell line expressing recombinant antibody. Cytotechnology, 2013, 65(3): 363-378.
doi: 10.1007/s10616-012-9488-4 pmid: 22907508
[29]   Jordan M, Voisard D, Berthoud A, et al. Cell culture medium improvement by rigorous shuffling of components using media blending. Cytotechnology, 2013, 65(1): 31-40.
doi: 10.1007/s10616-012-9462-1 pmid: 22695856
[30]   Liu Y Y, Zhang W Y, Deng X C, et al. Chinese hamster ovary cell performance enhanced by a rational divide-and-conquer strategy for chemically defined medium development. Journal of Bioscience and Bioengineering, 2015, 120(6): 690-696.
doi: 10.1016/j.jbiosc.2015.04.016 pmid: 26183860
[31]   Kuwae S, Miyakawa I, Doi T. Development of a chemically defined platform fed-batch culture media for monoclonal antibody-producing CHO cell lines with optimized choline content. Cytotechnology, 2018, 70(3): 939-948.
doi: 10.1007/s10616-017-0185-1 pmid: 29322349
[32]   Zhang J, Zhou J W, Liu J, et al. Development of chemically defined media supporting high cell density growth of Ketogulonicigenium vulgare and Bacillus megaterium. Bioresource Technology, 2011, 102(7): 4807-4814.
doi: 10.1016/j.biortech.2010.10.124 pmid: 21296571
[1] LIU Xiao-yan, HUANG Chao-qun, JIN Xue-rui, LUO Yun-zi. Research Progress of Artificial Metalloenzymes[J]. China Biotechnology, 2023, 43(10): 72-84.
[2] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[3] SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis[J]. China Biotechnology, 2020, 40(3): 88-95.
[4] LI Bing-juan,LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei. Advances in Protein Engineering of the Old Yellow Enzyme OYE Family[J]. China Biotechnology, 2020, 40(3): 163-169.
[5] Ying CHEN,Hai-peng XIAO,Xiao-yan ZHANG,Qing-wei GONG,Li MA,Wen-jia LI,Xiao-feng CHEN. Expression and Characterization of Recombinant GLP-1-IgG4-Fc Fusion Protein[J]. China Biotechnology, 2018, 38(7): 58-66.
[6] Cun-duo TANG,Hong-ling SHI,Zhu-jin JIAO,Fei LIU,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Effect of Prolines in the Loop of CPC Acylase Substrate Binding Region on Its Catalytic Properties[J]. China Biotechnology, 2017, 37(12): 34-39.
[7] YU Xiao-dan, WU Xiu-xiu, YAO Dong-sheng, LIU Da-ling, XIE Chun-fang. Trypsin-resistant Improvement of Bacillus subtilis β-1,4-endoxylanase by Rational Design Based on Molecular Structure Evaluation[J]. China Biotechnology, 2016, 36(8): 80-88.
[8] GUO Chao, WANG Zhi-yan, GAN Yi-ru, LI Dan, DENG Yong, YU Hao-ran, HUANG He. Engineering Thermostability of Bovine Enterokinase by Rational Design Method[J]. China Biotechnology, 2016, 36(8): 46-54.
[9] WEN Jia-ming, NIE Yan-feng, LIANG Han-zhang, HUANG Wen-xi, LEI Yun, XIE Qiu-ling, PEI Yun-lin, XIONG Sheng. MG-132 Improve the Production of TNFR-Fc Fusion Protein in CHO Cells[J]. China Biotechnology, 2015, 35(9): 1-6.
[10] YAN Li, WANG Kang, LI Rui-jian, BAI Yi, BAI Xian-hong, ZHOU Hai-ping. Manufaction of a New High-glycosylated Fusion Protein NESP-Fc[J]. China Biotechnology, 2015, 35(4): 80-85.
[11] MA Chen-lu, TANG Cun-duo, SHI Hong-ling, WANG Rui, YUE Chao, XIA Min, WU Min-chen, KAN Yun-chao. Semi-rational Modification of Cephalosporin C Acylase and Biosynthesis of 7-ACA[J]. China Biotechnology, 2015, 35(12): 65-71.
[12] DENG Chun-ping, TAO Jian-jun, HOU Yong-min, ZHONG Ling. Expression of hK1-L-Fc Fusion Protein in CHO Cells and Analysis of its Bioactivity[J]. China Biotechnology, 2011, 31(03): 23-28.
[13] SONG Xiao-Gong, XU Ting, LI Bing, FU Ling, HOU Li-Hua, CHEN Wei. Enhanced Production of Human Nerve Growth Factor by CHO Cells Through the Control of Culture Conditions[J]. China Biotechnology, 2010, 30(04): 13-19.
[14] . Serum-free aggregate perfusion culture of CHO cells: an ultrasonic and sedimentation column combined perfusion system[J]. China Biotechnology, 2008, 28(4): 53-58.
[15] . Construction and expression of human sApo2L-Fc fusion protein in CHO cells[J]. China Biotechnology, 2008, 28(2): 21-24.