Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (10): 72-84    DOI: 10.13523/j.cb.2304002
    
Research Progress of Artificial Metalloenzymes
LIU Xiao-yan**,HUANG Chao-qun**,JIN Xue-rui,LUO Yun-zi***()
Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(1490KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Enzymes with high efficiency and specificity have attracted much attention from researchers. Among them, metalloenzymes account for about 1/3 of natural enzymes. Metalloenzymes are generally composed of metal cofactors and corresponding protein scaffolds, in which the metal cofactors provide the active center. The protein scaffolds provide the chiral environment and attachment sites for metal cofactors. Existing studies have revealed that metalloenzymes fail to work without metal cofactors. The metal cofactors mainly exist in the form of metal ions or metal ligands. Among the natural metalloenzymes discovered so far, the metal elements in metal cofactors are mainly Fe, Cu, and Zn. Besides, there are also Mn and other metal elements. Metalloenzymes play an important role in organisms, including signal transduction and immune regulation. Various metalloenzymes can catalyze different reactions, such as hydroxylation and epoxidation. However, it is difficult for natural metalloenzymes to catalyze nonnatural substrates. Some metalloenzymes have low catalytic efficiency and poor stability in vitro, making them unable to be widely used. Recently, rapidly developed biotechnology has accelerated the development of metalloenzymes. By simulating natural metalloenzymes, artificial metalloenzymes (ArMs) have been constructed continuously. The appearance of ArMs has expanded reaction types. In summary, three main strategies have been applied in designing ArMs, including the reconstruction of cofactors, design of protein scaffolds, and modification of nanoparticles. The reconstruction of cofactors is mainly achieved by chemical modification and replacement. Design of protein scaffolds is achieved by selecting some stable structures and utilizing computer-aided methods. Notably, the development of nanotechnology has also provided good ideas for redesigning ArMs. The enzyme property can be improved by binding metalloenzymes to the surface of nanometers or being embedded in nanoparticles. Herein, we summarize some achievements of ArMs in recent years. A brief introduction about the challenges and opportunities faced by ArMs is provided, which is helpful for the design and application of ArMs.



Key wordsArtificial metalloenzyme      Cofactor      Protein scaffold      Rational design      Nanotechnology     
Received: 03 April 2023      Published: 02 November 2023
ZTFLH:  Q814  
Cite this article:

LIU Xiao-yan, HUANG Chao-qun, JIN Xue-rui, LUO Yun-zi. Research Progress of Artificial Metalloenzymes. China Biotechnology, 2023, 43(10): 72-84.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2304002     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I10/72

Fig.1 Strategies of artificial metalloenzymes construction Protein scaffolds design: Using de novo design to obtain scaffolds or using protein engineering to improve catalytic efficiency and develop new functions of artificial metalloenzymes. Cofactors reconstitution: Using chemical modification to improve the microenvironment of cofactors; introducing or replacing metal ligands to construct new artificial metalloenzymes. Enzymes modification assisted by nanotechnology: Encapsulating artificial metalloenzymes in nanoparticles or adsorbing on the surface to immobilize enzymes, allowing to increase stability and activity. The protein structure was from the Protein Data Bank (PDB) and edited by PyMOL
Fig.2 Artificial metalloenzymes construction via porphyrin substitution[27] (a) The structure and active sites of CYP119 (PDB ID: 1IO7) (b) Enantioselectivity and yield of the conversion of diazoesters to dihydrobenzofuran catalyzed by evolved CYP119 variants (c) Extended reaction type catalyzed by CYP119 mutants, Ir(Me)-PIX CYP119-Max: L69V, T213G, C317G, V254L. The protein structure is from PDB and edited with PyMOL
蛋白骨架 原辅因子 新辅因子 功能 参考文献
Apo-SiRCcP.1 - [4Fe-4S] 催化亚硫酸盐的还原反应 [11]
HSA - Au 催化氢胺化反应 [38]
Homo-oligomeric protein - Cu(bpy) 催化多质子/电子介导的氧化还原反应 [39]
MC6*a - Fe、Mn 过加氧酶活性 [40]
αRepA3 - Cu(II) 催化Diels-Alder反应 [41]
αRep - Co(III)-porphyrin complex 光诱导制氢和二氧化碳还原反应 [42]
MDRs - Cu(II)、BpyA_Cu(II) 催化Friedel-Crafts烷基化 [43]
mAbs - BIQ-Cu、BIQ-PdCl2、BIQ-Pd(OAc)2
BIQ-PtCl2
催化Friedel-Crafts烷基化反应 [44]
LmrR - Fe(III)-CPPIX 催化环丙烷化反应 [45]
LmrR - Cu(II)-phen complex 催化Friedel-Crafts烷基化反应 [46]
LmrR - Cu(II)-phenanthroline complex 催化Friedel- Crafts烷基化和
Diels - Alder反应
[47]
LmrR - Cu(II) complexes 催化迈克尔加成反应 [48]
Sav-SOD - Cp*Ir(biot-p-L)Cl 催化不对称氢转移反应 [49]
Nitrobindin (NB) - Cp*Rh(III) complexes 催化环加成反应 [50]
Nitrobindin (NB) - Cp*Rh(III)-dithiophosphate complex 催化环加成反应 [51]
POP - Dirhodium complexes 催化环丙烷化反应 [52]
POP - Ru(II) polypyridyl complexes 催化环加成反应 [53]
POP - Dirhodium complexes 催化重氮化偶合反应 [54]
(A3A3’)Y26C - Mn (III)-tetraphenylporphyrin 过氧化物酶和单加氧酶的活性 [55]
Four-helix bundle - Zn-PPIX 过氧化物酶活性 [56]
Four-helix bundle - Ru(II)(η6-arene)(bipyridine) complexes 催化氢转移反应 [57]
Van and DADA complexes - [IrCp*(m-I)Cl]Cl 催化环亚胺的不对称加氢反应 [58]
Heptapeptidic - Methyl salicylate Pd complexes 催化去炔丙基化和Suzuki - Miyaura
交叉偶联反应
[59]
TbADH Zn (II) Cp*Rh(III) complexes 催化还原反应 [24]
Azurin Cu Ni 催化碳碳耦合及硫酯合成反应 [60]
P450-BM3 Fe-PPIX Ir(Me)-deuteroporphyrin IX 催化烯烃环丙烷化反应 [61]
CYP119 Fe-PPIX Ir(Me)-PIX、Ir(Me)-MPIX 催化环丙烷化反应 [28,37,62]
Mb Fe-PPIX Fe-2, 4-diacetyl deuteroporphyrin IX 催化烯烃的不对称环丙烷化 [63]
Mb Fe-PPIX CuCP DNA切割活性 [64]
Table 1 Summary of artificial metalloenzymes containing metal cofactors
Fig.3 Artificial metalloenzymes construction employing protein scaffold[70] (a) Schematic diagram of ArM assembled by LmrR protein scaffold and copper cofactor (b) Friedel-Crafts alkylation of indoles catalyzed by ArM
Fig.4 De novo design strategy of protein scaffolds (a) Mechanism study of enzymatic reaction to find the key sites (b) Mining of stable protein structures and cofactors from databases (c) Rational design and assembly of the protein skeleton with cofactors (d) Screening of new artificial metalloenzymes. The protein structures are from PDB and edited with PyMOL
Fig.5 Strategies of artificial metalloenzymes modification assisted by nanotechnology (a) Immobilization of artificial metalloenzymes on the NPs surface using crosslinking agents (b) Immobilization of artificial metalloenzymes into the MOFs
[1]   Lin Y W. Rational design of artificial metalloproteins and metalloenzymes with metal clusters. Molecules, 2019, 24(15): 2743.
doi: 10.3390/molecules24152743
[2]   Riordan J F, Vallee B L. The functional roles of metals in metalloenzymes. Advances in Experimental Medicine and Biology, 1974, 48(0): 33-57.
pmid: 4215300
[3]   Karlin K D. Metalloenzymes, structural motifs, and inorganic models. Science, 1993, 261(5122): 701-708.
pmid: 7688141
[4]   Lovelock S L, Crawshaw R, Basler S, et al. The road to fully programmable protein catalysis. Nature, 2022, 606(7912): 49-58.
doi: 10.1038/s41586-022-04456-z
[5]   Bush K. Recent developments in β-lactamase research and their implications for the future. Reviews of Infectious Diseases, 1988, 10(4): 681-690.
pmid: 3055169
[6]   陈姣, 郑珩, 沈秉正, 等. IMP型金属β-内酰胺酶及其抑制剂研究进展. 今日药学, 2010, 20(9): 1-5.
[6]   Chen J, Zheng H, Shen B Z, et al. Research progress of IMP-type metal β-lactamase and its inhibitors. Pharmacy Today, 2010, 20(9): 1-5.
[7]   王继乾, 闫宏宇, 李洁, 等. 基于多肽自组装的人工金属酶. 化学进展, 2018, 30(8): 1121-1132.
doi: 10.7536/PC180112
[7]   Wang J Q, Yan H Y, Li J, et al. Artificial metalloenzymes based on peptide self-assembly. Progress in Chemistry, 2018, 30(8): 1121-1132.
doi: 10.7536/PC180112
[8]   Yamamura K, Kaiser E T. Studies on the oxidase activity of copper(II) carboxypeptidase A. Journal of the Chemical Society, Chemical Communications, 1976, 20: 830-831.
[9]   Schwizer F, Okamoto Y, Heinisch T, et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chemical Reviews, 2018, 118(1): 142-231.
doi: 10.1021/acs.chemrev.7b00014 pmid: 28714313
[10]   Thompson Z, Cowan J A. Artificial metalloenzymes: recent developments and innovations in bioinorganic catalysis. Small, 2020, 16(27): e2000392.
[11]   Mirts E N, Petrik I D, Hosseinzadeh P, et al. A designed heme-[4Fe-4S]metalloenzyme catalyzes sulfite reduction like the native enzyme. Science, 2018, 361(6407): 1098-1101.
doi: 10.1126/science.aat8474 pmid: 30213908
[12]   Bragança P M S, Carepo M S P, Pauleta S R, et al. Incorporation of a molybdenum atom in a rubredoxin-type centre of a de novo-designed α3DIV-L21C three-helical bundle peptide. Journal of Inorganic Biochemistry, 2023, 240: 112096.
doi: 10.1016/j.jinorgbio.2022.112096
[13]   Nastri F, Chino M, Maglio O, et al. Design and engineering of artificial oxygen-activating metalloenzymes. Chemical Society Reviews, 2016, 45(18): 5020-5054.
doi: 10.1039/c5cs00923e pmid: 27341693
[14]   Doble M V, Ward A C C, Deuss P J, et al. Catalyst design in oxidation chemistry; from KMnO4 to artificial metalloenzymes. Bioorganic & Medicinal Chemistry, 2014, 22(20): 5657-5677.
doi: 10.1016/j.bmc.2014.07.002
[15]   王志鹏, 邓耿. 基于辅因子化学本质及功能的分类与讨论. 大学化学, 2016, 31(4): 39-48.
[15]   Wang Z P, Deng G. Discussion and classification of cofactors based on their chemical essences and functions. University Chemistry, 2016, 31(4): 39-48.
[16]   Bersellini M, Roelfes G. A metal ion regulated artificial metalloenzyme. Dalton Transactions, 2017, 46(13): 4325-4330.
doi: 10.1039/C7DT00533D
[17]   Alonso-Cotchico L, Rodríguez-Guerra Pedregal J, Lledós A, et al. The effect of cofactor binding on the conformational plasticity of the biological receptors in artificial metalloenzymes: the case study of LmrR. Frontiers in Chemistry, 2019, 7: 211.
doi: 10.3389/fchem.2019.00211 pmid: 31024897
[18]   Hu C, Yu Y, Wang J Y. Improving artificial metalloenzymes’ activity by optimizing electron transfer. Chemical Communications, 2017, 53(30): 4173-4186.
doi: 10.1039/C6CC09921A
[19]   Oohora K, Onoda A, Hayashi T. Hemoproteins reconstituted with artificial metal complexes as biohybrid catalysts. Accounts of Chemical Research, 2019, 52(4): 945-954.
doi: 10.1021/acs.accounts.8b00676 pmid: 30933477
[20]   Fruk L, Müller J, Niemeyer C M. Kinetic analysis of semisynthetic peroxidase enzymes containing a covalent DNA-heme adduct as the cofactor. Chemistry, 2006, 12(28): 7448-7457.
[21]   Hayashi T, Hitomi Y, Ando T, et al. Peroxidase activity of myoglobin is enhanced by chemical mutation of heme-propionates. Journal of the American Chemical Society, 1999, 121(34): 7747-7750.
doi: 10.1021/ja9841005
[22]   Mirts E N, Bhagi-Damodaran A, Lu Y. Understanding and modulating metalloenzymes with unnatural amino acids, non-native metal ions, and non-native metallocofactors. Accounts of Chemical Research, 2019, 52(4): 935-944.
doi: 10.1021/acs.accounts.9b00011 pmid: 30912643
[23]   Ohashi M, Koshiyama T, Ueno T, et al. Preparation of artificial metalloenzymes by insertion of chromium(III) schiff base complexes into apomyoglobin mutants. Angewandte Chemie, 2003, 42(9): 1005-1008.
[24]   Morra S, Pordea A. Biocatalyst-artificial metalloenzyme cascade based on alcohol dehydrogenase. Chemical Science, 2018, 9(38): 7447-7454.
doi: 10.1039/c8sc02371a pmid: 30319745
[25]   Sreenilayam G, Moore E J, Steck V, et al. Metal substitution modulates the reactivity and extends the reaction scope of myoglobin carbene transfer catalysts. Advanced Synthesis & Catalysis, 2017, 359(12): 2076-2089.
[26]   Deng Y L, Dwaraknath S, Ouyang W H O, et al. Engineering an oxygen-binding protein for photocatalytic CO2 reductions in water. Angewandte Chemie, 2023, 135(20): e202215719.
doi: 10.1002/ange.v135.20
[27]   Dydio P, Key H M, Nazarenko A, et al. An artificial metalloenzyme with the kinetics of native enzymes. Science, 2016, 354(6308): 102-106.
pmid: 27846500
[28]   Liu Z N, Huang J, Gu Y, et al. Assembly and evolution of artificial metalloenzymes within E. coli Nissle 1917 for enantioselective and site-selective functionalization of C-H and C=C bonds. Journal of the American Chemical Society, 2022, 144(2): 883-890.
doi: 10.1021/jacs.1c10975
[29]   Perkins L J, Weaver B R, Buller A R, et al. De novo biosynthesis of a nonnatural cobalt porphyrin cofactor in E. coli and incorporation into hemoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(16): e2017625118.
[30]   林英武. 人工金属酶分子设计新进展: 肌红蛋白研究实例分析. 化学进展, 2018, 30(10): 1464-1474.
doi: 10.7536/PC180528
[30]   Lin Y W. Rational design of artificial metalloenzymes: case studies in myoglobin. Progress in Chemistry, 2018, 30(10): 1464-1474.
doi: 10.7536/PC180528
[31]   Bhagi-Damodaran A, Michael M A, Zhu Q H, et al. Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases. Nature Chemistry, 2017, 9(3): 257-263.
doi: 10.1038/nchem.2643 pmid: 28221360
[32]   Hosseinzadeh P, Marshall N M, Chacón K N, et al. Design of a single protein that spans the entire 2-V range of physiological redox potentials. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(2): 262-267.
[33]   Sreenilayam G, Moore E J, Steck V, et al. Stereoselective olefin cyclopropanation under aerobic conditions with an artificial enzyme incorporating an iron-chlorin e6 cofactor. ACS Catalysis, 2017, 7(11): 7629-7633.
doi: 10.1021/acscatal.7b02583 pmid: 29576911
[34]   Carminati D M, Moore E J, Fasan R D. Strategies for the expression and characterization of artificial myoglobin-based carbene transferases. Methods in Enzymology, 2020, 644: 35-61.
doi: S0076-6879(20)30282-2 pmid: 32943150
[35]   袁飞燕, 于洋, 李春. 基于非天然结构组件的人工酶设计与应用. 合成生物学, 2020, 1(6): 685-696.
doi: 10.12211/2096-8280.2020-008
[35]   Yuan F Y, Yu Y, Li C. Artificial enzyme designs and its application based on non-natural structural elements. Synthetic Biology Journal, 2020, 1(6): 685-696.
doi: 10.12211/2096-8280.2020-008
[36]   Oohora K, Hayashi T. Myoglobins engineered with artificial cofactors serve as artificial metalloenzymes and models of natural enzymes. Dalton Transactions, 2021, 50(6): 1940-1949.
doi: 10.1039/D0DT03597A
[37]   Gu Y, Natoli S N, Liu Z N, et al. Site-selective functionalization of (sp3)C-H bonds catalyzed by artificial metalloenzymes containing an iridium-porphyrin cofactor. Angewandte Chemie, 2019, 58(39): 13954-13960.
[38]   Chang T C, Vong K, Yamamoto T, et al. Prodrug activation by gold artificial metalloenzyme-catalyzed synthesis of phenanthridinium derivatives via hydroamination. Angewandte Chemie, 2021, 60(22): 12446-12454.
[39]   Jung S M, Yang M W, Song W J. Symmetry-adapted synthesis of dicopper oxidases with divergent dioxygen reactivity. Inorganic Chemistry, 2022, 61(31): 12433-12441.
doi: 10.1021/acs.inorgchem.2c01898
[40]   Leone L, D’Alonzo D, Balland V, et al. Mn-mimochrome VI*a: an artificial metalloenzyme with peroxygenase activity. Frontiers in Chemistry, 2018, 6: 590.
doi: 10.3389/fchem.2018.00590
[41]   Di Meo T, Ghattas W, Herrero C, et al. αRep A3: a versatile artificial scaffold for metalloenzyme design. Chemistry, 2017, 23(42): 10156-10166.
[42]   Udry G A O, Tiessler-Sala L, Pugliese E, et al. Photocatalytic hydrogen production and carbon dioxide reduction catalyzed by an artificial cobalt hemoprotein. International Journal of Molecular Sciences, 2022, 23(23): 14640.
doi: 10.3390/ijms232314640
[43]   Bersellini M, Roelfes G. Multidrug resistance regulators (MDRs) as scaffolds for the design of artificial metalloenzymes. Organic & Biomolecular Chemistry, 2017, 15(14): 3069-3073.
[44]   Adachi T, Harada A, Yamaguchi H. Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes. Scientific Reports, 2019, 9(1): 13551.
doi: 10.1038/s41598-019-49844-0 pmid: 31537832
[45]   Villarino L, Splan K E, Reddem E, et al. An artificial heme enzyme for cyclopropanation reactions. Angewandte Chemie, 2018, 57(26): 7785-7789.
[46]   Villarino L, Chordia S, Alonso-Cotchico L, et al. Cofactor binding dynamics influence the catalytic activity and selectivity of an artificial metalloenzyme. ACS Catalysis, 2020, 10(20): 11783-11790.
doi: 10.1021/acscatal.0c01619 pmid: 33101759
[47]   Chordia S, Narasimhan S, Paioni A L, et al. In vivo assembly of artificial metalloenzymes and application in whole-cell biocatalysis. Angewandte Chemie, 2021, 60(11): 5913-5920.
[48]   Zhou Z, Roelfes G. Synergistic catalysis in an artificial enzyme by simultaneous action of two abiological catalytic sites. Nature Catalysis, 2020, 3(3): 289-294.
doi: 10.1038/s41929-019-0420-6
[49]   Igareta N V, Tachibana R, Spiess D C, et al. Spiers memorial lecture: shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation. Faraday Discussions, 2023, 244(0):9-20.
doi: 10.1039/d3fd00034f pmid: 36924204
[50]   Kato S, Onoda A, Grimm A R, et al. Incorporation of a Cp*Rh(III)-dithiophosphate cofactor with latent activity into a protein scaffold generates a biohybrid catalyst promoting C(sp2)-H bond functionalization. Inorganic Chemistry, 2020, 59(19): 14457-14463.
doi: 10.1021/acs.inorgchem.0c02245
[51]   Kato S, Onoda A, Grimm A R, et al. Construction of a whole-cell biohybrid catalyst using a Cp*Rh(III)-dithiophosphate complex as a precursor of a metal cofactor. Journal of Inorganic Biochemistry, 2021, 216: 111352.
doi: 10.1016/j.jinorgbio.2020.111352
[52]   Lewis J C. Beyond the second coordination sphere: engineering dirhodium artificial metalloenzymes to enable protein control of transition metal catalysis. Accounts of Chemical Research, 2019, 52(3): 576-584.
doi: 10.1021/acs.accounts.8b00625 pmid: 30830755
[53]   Zubi Y S, Liu B Q, Gu Y F, et al. Controlling the optical and catalytic properties of artificial metalloenzyme photocatalysts using chemogenetic engineering. Chemical Science, 2022, 13(5): 1459-1468.
doi: 10.1039/d1sc05792h pmid: 35222930
[54]   Upp D M, Huang R, Li Y, et al. Engineering dirhodium artificial metalloenzymes for diazo coupling cascade reactions. Angewandte Chemie, 2021, 60(44): 23672-23677.
[55]   Kariyawasam K, Di Meo T, Hammerer F, et al. An artificial hemoprotein with inducible peroxidase- and monooxygenase-like activities. Chemistry, 2020, 26(65): 14929-14937.
[56]   Curnow P, Hardy B J, Dufour V, et al. Small-residue packing motifs modulate the structure and function of a minimal de novo membrane protein. Scientific Reports, 2020, 10(1): 15203.
doi: 10.1038/s41598-020-71585-8 pmid: 32938984
[57]   Biggs G S, Klein O J, Maslen S L, et al. Controlled ligand exchange between ruthenium organometallic cofactor precursors and a Naïve protein scaffold generates artificial metalloenzymes catalysing transfer hydrogenation. Angewandte Chemie, 2021, 60(19): 10919-10927.
[58]   Facchetti G, Bucci R, Fusè M, et al. Alternative strategy to obtain artificial imine reductase by exploiting vancomycin/D-Ala-D-Ala interactions with an iridium metal complex. Inorganic Chemistry, 2021, 60(5): 2976-2982.
doi: 10.1021/acs.inorgchem.0c02969 pmid: 33550804
[59]   Pérez-López A M, Belsom A, Fiedler L, et al. Dual-bioorthogonal catalysis by a palladium peptide complex. Journal of Medicinal Chemistry, 2023, 66(5): 3301-3311.
doi: 10.1021/acs.jmedchem.2c01689
[60]   Manesis A C, Yerbulekova A, Shearer J, et al. Thioester synthesis by a designed nickel enzyme models prebiotic energy conversion. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(30): e2123022119.
[61]   Reynolds E W, Schwochert T D, McHenry M W, et al. Orthogonal expression of an artificial metalloenzyme for abiotic catalysis. ChemBioChem, 2017, 18(24): 2380-2384.
doi: 10.1002/cbic.201700397 pmid: 29024391
[62]   Huang J, Liu Z N, Bloomer B J, et al. Unnatural biosynthesis by an engineered microorganism with heterologously expressed natural enzymes and an artificial metalloenzyme. Nature Chemistry, 2021, 13(12): 1186-1191.
doi: 10.1038/s41557-021-00801-3 pmid: 34650235
[63]   Carminati D M, Fasan R D. Stereoselective cyclopropanation of electron-deficient olefins with a cofactor redesigned carbene transferase featuring radical reactivity. ACS Catalysis, 2019, 9(10): 9683-9697.
doi: 10.1021/acscatal.9b02272 pmid: 32257582
[64]   Dong Y, Chen Y M, Kong X J, et al. Rational design of an artificial hydrolytic nuclease by introduction of a sodium copper chlorophyllin in L29E myoglobin. Journal of Inorganic Biochemistry, 2022, 235: 111943.
doi: 10.1016/j.jinorgbio.2022.111943
[65]   Jeong W J, Yu J, Song W J. Proteins as diverse, efficient, and evolvable scaffolds for artificial metalloenzymes. Chemical Communications, 2020, 56(67): 9586-9599.
doi: 10.1039/d0cc03137b pmid: 32691751
[66]   Joh N H, Wang T, Bhate M P, et al. De novo design of a transmembrane Zn2+-transporting four-helix bundle. Science, 2014, 346(6216): 1520-1524.
doi: 10.1126/science.1261172
[67]   Mann S I, Heinisch T, Ward T R, et al. Peroxide activation regulated by hydrogen bonds within artificial Cu proteins. Journal of the American Chemical Society, 2017, 139(48): 17289-17292.
doi: 10.1021/jacs.7b10452 pmid: 29117678
[68]   Filice M, Romero O, Gutiérrez-Fernández J, et al. Synthesis of a heterogeneous artificial metallolipase with chimeric catalytic activity. Chemical Communications, 2015, 51(45): 9324-9327.
doi: 10.1039/c5cc02450a pmid: 25960359
[69]   Fischer J, Renn D, Quitterer F, et al. Robust and versatile host protein for the design and evaluation of artificial metal centers. ACS Catalysis, 2019, 9(12): 11371-11380.
doi: 10.1021/acscatal.9b02896
[70]   Roelfes G. LmrR: a privileged scaffold for artificial metalloenzymes. Accounts of Chemical Research, 2019, 52(3): 545-556.
doi: 10.1021/acs.accounts.9b00004 pmid: 30794372
[71]   Bähr S, Brinkmann-Chen S, Garcia-Borràs M, et al. Selective enzymatic oxidation of silanes to silanols. Angewandte Chemie, 2020, 59(36): 15507-15511.
[72]   Ensari Y, de Almeida Santos G, Ruff A J, et al. Engineered P450 BM3 and cpADH5 coupled cascade reaction for β-oxo fatty acid methyl ester production in whole cells. Enzyme and Microbial Technology, 2020, 138: 109555.
doi: 10.1016/j.enzmictec.2020.109555
[73]   Beaumet M, Dose A, Bräuer A, et al. An artificial metalloprotein with metal-adaptive coordination sites and Ni-dependent quercetinase activity. Journal of Inorganic Biochemistry, 2022, 235: 111914.
doi: 10.1016/j.jinorgbio.2022.111914
[74]   Kato S, Onoda A, Schwaneberg U, et al. Evolutionary engineering of a Cp*Rh(III) complex-linked artificial metalloenzyme with a chimeric β-barrel protein scaffold. Journal of the American Chemical Society, 2023, 145(15): 8285-8290.
[75]   Alonso-Cotchico L, Rodríguez-Guerra J, Lledós A, et al. Molecular modeling for artificial metalloenzyme design and optimization. Accounts of Chemical Research, 2020, 53(4): 896-905.
doi: 10.1021/acs.accounts.0c00031 pmid: 32233391
[76]   Martins F, Pordea A, Jäger C M. Computationally driven design of an artificial metalloenzyme using supramolecular anchoring strategies of iridium complexes to alcohol dehydrogenase. Faraday Discussions, 2022, 234: 315-335.
doi: 10.1039/d1fd00070e pmid: 35156975
[77]   Sánchez-Aparicio J E, Sciortino G, Mates-Torres E, et al. Successes and challenges in multiscale modelling of artificial metalloenzymes: the case study of POP-Rh2 cyclopropanase. Faraday Discussions, 2022, 234: 349-366.
doi: 10.1039/d1fd00069a pmid: 35147145
[78]   Basler S, Studer S, Zou Y K, et al. Efficient Lewis acid catalysis of an abiological reaction in a de novo protein scaffold. Nature Chemistry, 2021, 13(3): 231-235.
doi: 10.1038/s41557-020-00628-4
[79]   Gutte B, Klauser S. Design of catalytic polypeptides and proteins. Protein Engineering, Design and Selection, 2018, 31(12): 457-470.
doi: 10.1093/protein/gzz009
[80]   Reig A J, Pires M M, Snyder R A, et al. Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins. Nature Chemistry, 2012, 4(11): 900-906.
doi: 10.1038/nchem.1454
[81]   Lombardi A, Pirro F, Maglio O, et al. De novo design of four-helix bundle metalloproteins: one scaffold, diverse reactivities. Accounts of Chemical Research, 2019, 52(5): 1148-1159.
doi: 10.1021/acs.accounts.8b00674 pmid: 30973707
[82]   Pirro F, La Gatta S, Arrigoni F, et al. A de novo-designed type 3 copper protein tunes catechol substrate recognition and reactivity. Angewandte Chemie, 2023, 62(1): e202211552.
[83]   Marcos E, Chidyausiku T M, McShan A C, et al. De novo design of a non-local β-sheet protein with high stability and accuracy. Nature Structural & Molecular Biology, 2018, 25(11): 1028-1034.
doi: 10.1038/s41594-018-0141-6
[84]   Rufo C M, Moroz Y S, Moroz O V, et al. Short peptides self-assemble to produce catalytic amyloids. Nature Chemistry, 2014, 6(4): 303-309.
doi: 10.1038/nchem.1894 pmid: 24651196
[85]   Cangelosi V, Ruckthong L, PecoraroV L, et al. Lead: its effects on environment and health. Berlin: De Gruyter, 2017: 271-318.
[86]   Thomas F, Dawson W M, Lang E J M, et al. De novo-designed α-helical barrels as receptors for small molecules. ACS Synthetic Biology, 2018, 7(7): 1808-1816.
doi: 10.1021/acssynbio.8b00225 pmid: 29944338
[87]   Koebke K J, Pecoraro V L. Development of de novo copper nitrite reductases: where we are and where we need to go. ACS Catalysis, 2018, 8(9): 8046-8057.
doi: 10.1021/acscatal.8b02153 pmid: 30294504
[88]   Hassan I S, Fuller J T, Dippon V N, et al. Tuning through-space interactions via the secondary coordination sphere of an artificial metalloenzyme leads to enhanced Rh(iii)-catalysis. Chemical Science, 2022, 13(32): 9220-9224.
doi: 10.1039/d2sc03674f pmid: 36093000
[89]   Li R F, Wijma H J, Song L, et al. Computational redesign of enzymes for regio- and enantioselective hydroamination. Nature Chemical Biology, 2018, 14(7): 664-670.
doi: 10.1038/s41589-018-0053-0 pmid: 29785057
[90]   Pingale P, Kendre P, Pardeshi K, et al. An emerging era in manufacturing of drug delivery systems: nanofabrication techniques. Heliyon, 2023, 9(3): e14247.
doi: 10.1016/j.heliyon.2023.e14247
[91]   Zambrano G, Ruggiero E, Malafronte A, et al. Artificial heme enzymes for the construction of gold-based biomaterials. International Journal of Molecular Sciences, 2018, 19(10): 2896.
doi: 10.3390/ijms19102896
[92]   Wang D D, Jana D, Zhao Y L. Metal-organic framework derived nanozymes in biomedicine. Accounts of Chemical Research, 2020, 53(7): 1389-1400.
doi: 10.1021/acs.accounts.0c00268 pmid: 32597637
[93]   Wang Q Q, Zhang X P, Huang L, et al. GOx@ZIF-8(NiPd) nanoflower: an artificial enzyme system for tandem catalysis. Angewandte Chemie, 2017, 56(50): 16082-16085.
[94]   Wu X L, Yue H, Zhang Y Y, et al. Packaging and delivering enzymes by amorphous metal-organic frameworks. Nature Communications, 2019, 10(1): 5165.
doi: 10.1038/s41467-019-13153-x pmid: 31727883
[95]   Song S X, Wang J Y, Song N, et al. Peptide interdigitation-induced twisted nanoribbons as chiral scaffolds for supramolecular nanozymes. Nanoscale, 2020, 12(4): 2422-2433.
doi: 10.1039/c9nr09492j pmid: 31916547
[96]   Yuan G Y, Xi Z, Wang C, et al. Construction of supramolecular chiral polyaniline-gold nanocomposite as nanozyme for enantioselective catalysis. Acta Physico-Chimica Sinica, 2023, 39 (7): 2212061.
[97]   Chen M, Wang Z H, Shu J X, et al. Mimicking a natural enzyme system: cytochrome c oxidase-like activity of Cu2O nanoparticles by receiving electrons from cytochrome c. Inorganic Chemistry, 2017, 56(16): 9400-9403.
doi: 10.1021/acs.inorgchem.7b01393
[98]   Ganguly A, Luong T Q, Brylski O, et al. Elucidation of the catalytic mechanism of a miniature zinc finger hydrolase. The Journal of Physical Chemistry B, 2017, 121(26): 6390-6398.
doi: 10.1021/acs.jpcb.7b05027
[99]   Hirota S, Lin Y W. Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions. Journal of Biological Inorganic Chemistry, 2018, 23(1): 7-25.
doi: 10.1007/s00775-017-1506-8 pmid: 29218629
[100]   Haga T, Hirakawa H, Nagamune T. Artificial self-sufficient cytochrome P450 containing multiple auxiliary proteins demonstrates improved monooxygenase activity. Biotechnology Journal, 2018, 13(12): e1800088.
[101]   Yu H L, Li T, Chen F F, et al. Bioamination of alkane with ammonium by an artificially designed multienzyme cascade. Metabolic Engineering, 2018, 47: 184-189.
doi: 10.1016/j.ymben.2018.02.009
[102]   Wang X L, Lin X D, Jiang Y P, et al. Engineering cytochrome P450BM3 enzymes for direct nitration of unsaturated hydrocarbons. Angewandte Chemie, 2023, 62(13): e202217678.
[103]   于洋, 王江云. 人工酶与定向进化的前沿与挑战. 科技导报, 2020, 38(8): 101-105.
[103]   Yu Y, Wang J Y. Frontiers and challenges of artificial enzyme and directed evolution. Science & Technology Review, 2020, 38(8): 101-105.
[104]   Huang P S, Boyken S E, Baker D. The coming of age of de novo protein design. Nature, 2016, 537(7620): 320-327.
doi: 10.1038/nature19946
[105]   Thomson A R, Wood C W, Burton A J, et al. Computational design of water-soluble α-helical barrels. Science, 2014, 346(6208): 485-488.
doi: 10.1126/science.1257452 pmid: 25342807
[106]   Koga N, Tatsumi-Koga R, Liu G H, et al. Principles for designing ideal protein structures. Nature, 2012, 491(7423): 222-227.
doi: 10.1038/nature11600
[107]   Pan X J, Thompson M C, Zhang Y, et al. Expanding the space of protein geometries by computational design of de novo fold families. Science, 2020, 369(6507): 1132-1136.
doi: 10.1126/science.abc0881
[108]   Huang B, Xu Y, Hu X H, et al. A backbone-centred energy function of neural networks for protein design. Nature, 2022, 602(7897): 523-528.
doi: 10.1038/s41586-021-04383-5
[109]   Morcos F, Pagnani A, Lunt B, et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): E1293-E1301.
[110]   Senior A W, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning. Nature, 2020, 577(7792): 706-710.
doi: 10.1038/s41586-019-1923-7
[111]   Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873): 583-589.
doi: 10.1038/s41586-021-03819-2
[112]   Ferruz N, Heinzinger M, Akdel M, et al. From sequence to function through structure: deep learning for protein design. Computational and Structural Biotechnology Journal, 2022, 21: 238-250.
doi: 10.1016/j.csbj.2022.11.014
[113]   Wang J, Lisanza S, Juergens D, et al. Scaffolding protein functional sites using deep learning. Science, 2022, 377(6604): 387-394.
doi: 10.1126/science.abn2100 pmid: 35862514
[1] ZHANG Hong-wei, WANG Peng-chao. Research Progress of Microbial Cofactor Engineering[J]. China Biotechnology, 2023, 43(4): 112-122.
[2] SU Ying, ZHANG Wei-jian, WAN Yu-xiang, SHEN Tian-fang, ZHANG Xin-ran, ZHANG Ru-yue, TAN Wen-song, ZHAO Liang. Rational Design and Establishment of CHO Cell Intensified Fed-batch Culture Process[J]. China Biotechnology, 2023, 43(10): 20-31.
[3] Nan JIA,Guo-wei ZANG,Chun LI,Ying WANG. Metabolic Regulations and Applications of Cofactors in Microbial Cell Factories[J]. China Biotechnology, 2022, 42(7): 79-89.
[4] LIANG Shi-yu,WAN Li,GUO Xiao-jia,WANG Xue-ying,LV Li-ting,HU Ying-han,ZHAO Zong-bao. Engineered Rhodosporidium toruloides Strains Capable of Biosynthesizing a Non-natural Cofactor[J]. China Biotechnology, 2022, 42(5): 58-68.
[5] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[6] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[7] LI Bing-juan,LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei. Advances in Protein Engineering of the Old Yellow Enzyme OYE Family[J]. China Biotechnology, 2020, 40(3): 163-169.
[8] SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis[J]. China Biotechnology, 2020, 40(3): 88-95.
[9] Jian-xiu LI,Xian-rui CHEN,Xiao-ling CHEN,Yan-yan HUANG,Qi-wen MO,Neng-zhong XIE,Ri-bo HUANG. Construct Whole-cell Biocatalyst and Produce (S)-Acetoin via Synthetic Biology Strategy[J]. China Biotechnology, 2019, 39(4): 60-68.
[10] Cun-duo TANG,Hong-ling SHI,Zhu-jin JIAO,Fei LIU,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Effect of Prolines in the Loop of CPC Acylase Substrate Binding Region on Its Catalytic Properties[J]. China Biotechnology, 2017, 37(12): 34-39.
[11] YU Xiao-dan, WU Xiu-xiu, YAO Dong-sheng, LIU Da-ling, XIE Chun-fang. Trypsin-resistant Improvement of Bacillus subtilis β-1,4-endoxylanase by Rational Design Based on Molecular Structure Evaluation[J]. China Biotechnology, 2016, 36(8): 80-88.
[12] GUO Chao, WANG Zhi-yan, GAN Yi-ru, LI Dan, DENG Yong, YU Hao-ran, HUANG He. Engineering Thermostability of Bovine Enterokinase by Rational Design Method[J]. China Biotechnology, 2016, 36(8): 46-54.
[13] MA Chen-lu, TANG Cun-duo, SHI Hong-ling, WANG Rui, YUE Chao, XIA Min, WU Min-chen, KAN Yun-chao. Semi-rational Modification of Cephalosporin C Acylase and Biosynthesis of 7-ACA[J]. China Biotechnology, 2015, 35(12): 65-71.
[14] LIU Xiao-fei, FU Jing, HUO Guang-xin, ZHANG Bo, WANG Zhi-wen, CHEN Tao. Latest Advances of Microbial Production of Platform Chemical Acetoin[J]. China Biotechnology, 2015, 35(10): 91-99.
[15] LI Bing-juan, LI Yu-xia, LI Bei-ping, LING Yan, ZHOU Wei, LIU Gang, ZHANG Jing-hai, YUE Jun-jie, CHEN Hui-peng. Study of the Relationship between the Disordered C Terminusin of Formate Dehydrogenase and the Conversion Rate in the Whole-cell Catalysis of Prochiral Acetone[J]. China Biotechnology, 2013, 33(8): 1-10.