Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (6): 125-132    DOI: 10.13523/j.cb.2211024
    
Biosafety Risks of Synthetic Biology Related to Human Immunity and The Countermeaseures
FU Meng-meng1,SU Dan-dan2,ZUO Kun-lan3,WU Zong-zhen3,LI Si-si4,XU Yan-long5,LIU Huan3,6,**()
1 Beijing Science Communication Development and Research Center, Beijing 100101, China
2 Renmin Hospital of Wuhan University, Wuhan 430072, China
3 School of Humanities and Social Sciences, University of Science and Technology of China, Hefei 230026, China
4 Office of Laboratory Management, Chinese Center for Disease Control and Prevention, Beijing 102206, China
5 College of Humanities, University of Chinese Academy of Sciences, Beijing 100049, China
6 Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
Download: HTML   PDF(514KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Human immune-related synthetic biology has always been one of the hot spots in the international biomedical field, which has shown great application potential in such fields as immunotherapy for critical diseases and preventive medicine. Moreover, human immune-related synthetic biology and biological safety will increasingly become an important health research topic for science and technology to benefit human welfare. This cutting-edge research field will also affect the overall national security and the future fate of mankind. By focusing on the analysis of possible biosafety risk factors in the field of synthetic biology related to human immunity, the research was conducted from five aspects: the impact of microorganisms on immune function, immunosuppression, immune overreaction, autoimmune response and human genomic immunity, and the biosafety issues related to synthetic biology were proposed and the corresponding strategies were proposed as safeguard measures for the scientific and technological innovation and development of biosafety and synthetic biotechnology in the field of human health.



Key wordsHuman immunity      Synthetic biology      Biosafety     
Received: 13 November 2022      Published: 04 July 2023
ZTFLH:  Q819  
Cite this article:

FU Meng-meng, SU Dan-dan, ZUO Kun-lan, WU Zong-zhen, LI Si-si, XU Yan-long, LIU Huan. Biosafety Risks of Synthetic Biology Related to Human Immunity and The Countermeaseures. China Biotechnology, 2023, 43(6): 125-132.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2211024     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I6/125

生物安全风险 应对策略
人体微生物合成生物学影响免疫功能,如免疫排斥、过敏反应等
免疫应答抑制,如病毒载体携带部分致病基因或失活病毒在特定情况下被激活等
免疫过激应答,如免疫细胞过度释放炎性物质和治疗性微生物溶瘤病毒、噬菌体等具有免疫原性
自身免疫应答风险,如免疫细胞过度激活攻击自身组织、细胞凋亡造成的免疫原性片段释放及个体遗传因素等
干扰人类基因组免疫,如基因治疗药物具有脱靶效应、非特异性沉默免疫细胞等
① 建立回溯机制和微生物种群印迹
② 加强研究监管和安全立法
③ 关注新型合成抗原及其免疫应答
④ 应用宏基因组学和大数据系统
⑤ 密切关注基因编辑技术
Table 1 Biosafety risks and countermeasures of synthetic biology related to human immunity
[1]   Inda M E, Lu T K. Microbes as biosensors. Annual Review of Microbiology, 2020, 74: 337-359.
doi: 10.1146/annurev-micro-022620-081059 pmid: 32660390
[2]   Kang M, Choe D, Kim K, et al. Synthetic biology approaches in the development of engineered therapeutic microbes. International Journal of Molecular Sciences, 2020, 21(22): 8744.
doi: 10.3390/ijms21228744
[3]   van Spronsen F J, Blau N, Harding C, et al. Phenylketonuria. Nature Reviews Disease Primers, 2021, 7(1): 1-19.
doi: 10.1038/s41572-020-00234-1
[4]   Isabella V M, Ha B N, Castillo M J, et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nature Biotechnology, 2018, 36(9): 857-864.
doi: 10.1038/nbt.4222 pmid: 30102294
[5]   Hamady Z Z R, Scott N, Farrar M D, et al. Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut, 2010, 59(4): 461-469.
doi: 10.1136/gut.2008.176131 pmid: 19736360
[6]   Mimee M, Nadeau P, Hayward A, et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science, 2018, 360(6391): 915-918.
doi: 10.1126/science.aas9315 pmid: 29798884
[7]   Zhang L, Morgan R A, Beane J D, et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin Cancer Res, 2015, 21(10): 2278-2288.
doi: 10.1158/1078-0432.CCR-14-2085 pmid: 25695689
[8]   Yew C H T, Gurumoorthy N, Nordin F, et al. Integrase deficient lentiviral vector: prospects for safe clinical applications. PeerJ, 2022, 10: e13704.
doi: 10.7717/peerj.13704
[9]   Rajendran L, Paolicelli R. Microglia-mediated synapse loss in alzheimer’s disease. The Journal of Neuroscience, 2018, 38: 2911-2919.
doi: 10.1523/JNEUROSCI.1136-17.2017
[10]   Maes M E, Colombo G, Schulz R, et al. Targeting microglia with lentivirus and AAV: recent advances and remaining challenges. Neuroscience Letters, 2019, 707: 134310.
doi: 10.1016/j.neulet.2019.134310
[11]   Guo Q, Zhang J, Zheng Z S, et al. Lentivirus-mediated microRNA-26a-modified neural stem cells improve brain injury in rats with cerebral palsy. Journal of Cellular Physiology, 2020, 235(2): 1274-1286.
doi: 10.1002/jcp.29043 pmid: 31264214
[12]   Guo Z S, Lu B F, Guo Z B, et al. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. Journal for ImmunoTherapy of Cancer, 2019, 7(1): 6.
doi: 10.1186/s40425-018-0495-7 pmid: 30626434
[13]   Shukarev G, Callendret B, Luhn K, et al. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks. Human Vaccines & Immunotherapeutics, 2017, 13(2): 266-270.
[14]   Iwakuma T, Cui Y, Chang L J. Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology, 1999, 261(1): 120-132.
pmid: 10441560
[15]   Guerin J L, Gelfi J, Boullier S, et al. Myxoma virus leukemia-associated protein is responsible for major histocompatibility complex class I and Fas-CD 95 down-regulation and defines scrapins, a new group of surface cellular receptor abductor proteins. Journal of Virology, 2002, 76(6): 2912-2923.
doi: 10.1128/JVI.76.6.2912-2923.2002
[16]   Liszewski M K, Leung M K, Hauhart R, et al. Smallpox inhibitor of complement enzymes (SPICE): dissecting functional sites and abrogating activity. The Journal of Immunology, 2009, 183(5): 3150-3159.
doi: 10.4049/jimmunol.0901366
[17]   Hong M H, Clubb J D, Chen Y Y. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell, 2020, 38(4): 473-488.
doi: 10.1016/j.ccell.2020.07.005 pmid: 32735779
[18]   Pehlivan K C, Duncan B B, Lee D W. CAR-T cell therapy for acute lymphoblastic leukemia: transforming the treatment of relapsed and refractory disease. Current Hematologic Malignancy Reports, 2018, 13(5): 396-406.
doi: 10.1007/s11899-018-0470-x pmid: 30120708
[19]   Jin Y J, Dong Y, Zhang J, et al. The toxicity of cell therapy: mechanism, manifestations, and challenges. Journal of Applied Toxicology, 2021, 41(5): 659-667.
doi: 10.1002/jat.4100 pmid: 33241595
[20]   Ahmed S, Ahmed M Z, Rafique S, et al. Recent approaches for downplaying antibiotic resistance: molecular mechanisms. BioMed Research International, 2023, 2023: 1-27.
[21]   Hoshiga F, Yoshizaki K, Takao N, et al. Modification of T2 phage infectivity toward Escherichia coli O157: H7 via using CRISPR/Cas9. FEMS Microbiology Letters, 2019, 366(4): fnz041.
[22]   Federici S, Nobs S P, Elinav E. Phages and their potential to modulate the microbiome and immunity. Cellular & Molecular Immunology, 2021, 18(4): 889-904.
[23]   Dabrowska K, Górski A, Abedon S T. Bacteriophage pharmacology and immunology. Bacteriophages. Cham: Springer, 2021: 295-339.
[24]   Liang S, Latchman Y, Buhlmann J, et al. Regulation of PD-1, PD-L1, and PD-L 2 expression during normal and autoimmune responses. European Journal of Immunology, 2003, 33(10): 2706-2716.
doi: 10.1002/(ISSN)1521-4141
[25]   Sharpe A H, Pauken K E. The diverse functions of the PD1 inhibitory pathway. Nature Reviews Immunology, 2018, 18(3): 153-167.
doi: 10.1038/nri.2017.108 pmid: 28990585
[26]   周静文, 何明基, 练辉, 等. 免疫检查点抑制剂PD-1免疫相关不良反应的临床分析. 介入放射学杂志, 2021, 30(1): 29-33.
[26]   Zhou J W, He M J, Lian H, et al. Clinical analysis of immune-related adverse events of PD-1 immune checkpoint inhibitors. Journal of Interventional Radiology, 2021, 30(1): 29-33.
[27]   Sieiro Santos C, Álvarez Castro C, Moriano Morales C, et al. Anti-TNF-α-induced lupus syndrome. Zeitschrift Für Rheumatologie, 2021, 80(5): 481-486.
doi: 10.1007/s00393-021-00983-8
[28]   ChavarríaMiranda A, Hernández Lain A, Toldos González O, et al. Immune-mediated necrotizing myopathy after treatment with adalimumab in a patient with HLA-B 27 ankylosing spondylitis. Neurologia (Barcelona, Spain), 2020, 36(8): 631-632.
[29]   Carapetis J R, Beaton A, Cunningham M W, et al. Acute rheumatic fever and rheumatic heart disease. Nature Reviews Disease Primers, 2016, 2(1): 1-24.
[30]   Ramos-Casals M, Brito-Zerón P, Soto M J, et al. Autoimmune diseases induced by TNF-targeted therapies. Best Practice & Research Clinical Rheumatology, 2008, 22(5): 847-861.
[31]   Neradová A, Stam F, van den Berg J G, et al. Etanercept-associated SLE with lupus nephritis. Lupus, 2009, 18(7): 667-668.
doi: 10.1177/0961203308100560 pmid: 19433471
[32]   Reyes L M, Estrada J L, Wang Z Y, et al. Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. The Journal of Immunology, 2014, 193(11): 5751-5757.
doi: 10.4049/jimmunol.1402059
[33]   刘珊, 方姝煜. 基因编辑治疗原发性免疫缺陷病. 中国当代儿科杂志, 2021, 23(7): 743-748.
[33]   Liu S, Fang S Y. Gene editing for the treatment of primary immunodeficiency disease. Chinese Journal of Contemporary Pediatrics, 2021, 23(7): 743-748.
[34]   Zhang J P, Yu X P, Guo P, et al. Satellite subgenomic particles are key regulators of adeno-associated virus life cycle. Viruses, 2021, 13(6): 1185.
doi: 10.3390/v13061185
[35]   Adams D, Gonzalez-Duarte A, O’Riordan W D, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. New England Journal of Medicine, 2018, 379(1): 11-21.
doi: 10.1056/NEJMoa1716153
[36]   Ratner M. Patients with porphyria bask in sunlight of FDA approval. Nature Biotechnology, 2019, 37(12): 1390-1391.
doi: 10.1038/s41587-019-0347-0 pmid: 31796929
[37]   Scott L J, Keam S J. Lumasiran: first approval. Drugs, 2021, 81(2): 277-282.
doi: 10.1007/s40265-020-01463-0 pmid: 33405070
[38]   赵晴, 陈广洁. siRNA在自身免疫病治疗中的研究进展. 现代免疫学, 2012, 32(6):519-522.
[38]   Zhao Q, Chen G J. Research progress of siRNA in the treatment of autoimmune diseases. Current Immunology, 2012, 32(6):519-522.
[39]   曲泽鹏, 陈沫先, 曹朝辉, 等. 合成微生物群落研究进展. 合成生物学, 2020, 1(6): 621-634.
doi: 10.12211/2096-8280.2020-012
[39]   Qu Z P, Chen M X, Cao C H, et al. Research advances in synthetic microbial communities. Synthetic Biology Journal, 2020, 1(6): 621-634.
doi: 10.12211/2096-8280.2020-012
[40]   宁峻涛, 邹诗施, 左锟澜, 等. 合成生物活性物质的生物安全风险和应对策略研究. 中国生物工程杂志, 2023, 43(2-3): 180-189.
[40]   Ning J T, Zou S S, Zuo K L, et al. Biosafety risks and countermeasures of active substance in synthesis biology. China Biotechnology, 2023, 43(2-3): 180-189.
[41]   冀朋. 合成生物学的哲学基础问题研究. 武汉:华中科技大学, 2021.
[41]   Ji P. Research on philosophical foundation of synthetic biology. Wuhan:Huazhong University of Science and Technology, 2021.
[42]   潘婷婷, 张娟. 腺相关病毒载体工程研究. 生物化工, 2020, 6(4):156-159, 162
[42]   Pan T T, Zhang J. Recent advances in engineering adeno-associated virus. Shengwu Huagong, 2020, 6(4):156-159, 162
[43]   李洋, 申晓林, 孙新晓, 等. CRISPR基因编辑技术在微生物合成生物学领域的研究进展. 合成生物学, 2021, 2(1):106-120.
doi: 10.12211/2096-8280.2020-039
[43]   Li Y, Shen X L, Sun X X, et al. Advances of CRISPR gene editing in microbial synthetic biology. Synthetic Biology Journal, 2021, 2(1):106-120.
doi: 10.12211/2096-8280.2020-039
[1] LI Yu-tong, CUI Tian-qi, ZHANG Hai-lin, YU Guang-le, LUAN Ji, WANG Hai-long. Research Advances in Tumor-targeting Bacteria Escherichia coli Nissle 1917 in Cancer Therapy[J]. China Biotechnology, 2023, 43(6): 54-68.
[2] LIU Ting-ting, ZHANG Ping, ZHANG Yue. Regulation Role of Light-controlled Expression Systems in Synthetic Biology[J]. China Biotechnology, 2023, 43(4): 92-100.
[3] NING Jun-tao, ZOU Shi-shi, ZUO Kun-lan, WU Zong-zhen, Li Jing, XU Yan-long, LIU Huan. Biosafety Risks and Countermeasures of Active Substance in Synthesis Biology[J]. China Biotechnology, 2023, 43(2/3): 180-189.
[4] YANG Yang, YAO Ming-dong, WANG Ying, XIAO Wen-hai. Research Progress of Synthesis of 2'-Fucosyllactose by Yeast[J]. China Biotechnology, 2023, 43(1): 127-138.
[5] GUO Yan-tong,LIU Zhong-ming,ZHANG Hai-yan,ZHANG Bao. Molecular Diagnostic POCT Technology and Its Application in Emerging Infectious Diseases[J]. China Biotechnology, 2022, 42(9): 50-57.
[6] Xue-xia ZENG,Yu DAN,Shao-ming MAO,Jia-hui SUN,Guo-dong LUAN,Xue-feng LV. Research Progress on the Cyanobacterial Photosynthetic Production of Sugars Utilizing Carbon Dioxide[J]. China Biotechnology, 2022, 42(7): 90-100.
[7] ZHANG Da-lu,GE Qi,FENG Yi-bo,CHEN Wei-gang. Comparison and Analysis on Scientific Research Programs on DNA Data Storage[J]. China Biotechnology, 2022, 42(6): 116-129.
[8] BAI Song,HOU Zheng-jie,GAO Geng-rong,QIAO Bin,CHENG Jing-sheng. Advances in the Synthesis of Odd-chain Fatty Acids by Microorganisms[J]. China Biotechnology, 2022, 42(6): 76-85.
[9] LIANG Shi-yu,WAN Li,GUO Xiao-jia,WANG Xue-ying,LV Li-ting,HU Ying-han,ZHAO Zong-bao. Engineered Rhodosporidium toruloides Strains Capable of Biosynthesizing a Non-natural Cofactor[J]. China Biotechnology, 2022, 42(5): 58-68.
[10] ZHAO Chi-hong,SU Dan-dan,LI Chun,WU Zong-zhen,ZUO Kun-lan,XU Yan-long,LIU Huan. Synthetic Biology Risks and Biosafety Strategies in the View of Overall National Security Concept[J]. China Biotechnology, 2022, 42(12): 120-128.
[11] Chun-li HAN,Han-jie WANG. Advances of Engineered Live Biotherapeutics in Tumor Immunotherapy[J]. China Biotechnology, 2022, 42(10): 39-50.
[12] Hui-min LI,Bin JIA,Xia LI,Duo LIU. Advances in Engineering Yeast Chassis for Producing Aromatic Compounds[J]. China Biotechnology, 2022, 42(10): 80-92.
[13] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[14] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[15] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.