Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (11): 88-98    DOI: 10.13523/j.cb.2209040
    
Isolation and Biological Activity of Melanin from Sunflower Seed Shell
LI Chao-feng1,2,WU Yu-ping1,LI Shuang-shuang1,XU Feng-mei1,ZHANG Xin-yi1,WANG Wei-zhong1,2,TANG Bo-ping1,2,**()
1 School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
2 Jiangsu Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng 224007, China
Download: HTML   PDF(1937KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Natural edible pigments with high safety and low toxicity usually possess various nutritional and pharmacological effects, and they have huge practical application value in the market. In this paper, the extraction condition, antioxidant activity, which included DPPH radical-scavenging activity, superoxide radical (O2-)-scavenging activity and reducing power, and metal chelating activity of melanin from sunflower seed shell were investigated in detail to provide theoretical basis for its future application. Methods: In this paper, the efficient preparation of melanin from sunflower seed shell was achieved using hot alkali extraction by single-factor experiments combined with response surface methodology (RSM), acid hydrolysis, washing with organic solvents, re-dissolution and re-precipitation. The antioxidant activity and adsorption activity were determined by nitrotetrazolium nlue chloride reduction method, spectrophotometry and static adsorption. Results: Melanin from sunflower seed shell was successfully prepared. The optimal conditions were determined as follows: NaOH concentration, 0.11 mol/L; liquid-to-solid ratio, 15.77∶1; extraction time, 181.16 min; and extraction temperature, 75.19℃. Under these conditions, the experimental yield of melanin was 2.95%, which was well matched with the value predicted by the developed model. The ability to scavenge DPPH radical, superoxide radical (O2-) and the reducing power of melanin from sunflower seed shell were stronger than those of synthetic melanin. Furthermore, the adsorption efficiency of melanin from sunflower seed shell to Pb2+, Cu2+ and Cr3+ were higher than that of synthetic melanin. Conclusion: Compared with synthetic melanin, natural melanin from sunflower seed shell could be used as colorant, antioxidant and adsorbent, and was more effective. Therefore, melanin from sunflower seed shell was a potential replacement of synthetic melanin.



Key wordsSunflower seed shell      Melanin      Extraction      Antioxidant activity      Absorption     
Received: 15 September 2022      Published: 07 December 2022
ZTFLH:  Q819  
Cite this article:

LI Chao-feng, WU Yu-ping, LI Shuang-shuang, XU Feng-mei, ZHANG Xin-yi, WANG Wei-zhong, TANG Bo-ping. Isolation and Biological Activity of Melanin from Sunflower Seed Shell. China Biotechnology, 2022, 42(11): 88-98.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2209040     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I11/88

Fig.1 Effect of NaOH concentration on melanin extraction Different lowercase letters on the column indicate significant differences between different NaOH concentration treatments in the same period (P<0.05)
Fig.2 Effect of liquid-to-solid ratio on melanin extraction Different lowercase letters on the column indicate significant differences between different solid to liquid ratio treatments in the same period (P<0.05)
Fig.3 Effect of temperature on melanin extraction Different lowercase letters on the column indicate significant differences between different temperature treatments in the same period (P<0.05)
Fig.4 Effect of time on melanin extraction Different lowercase letters on the column indicate significant differences between different time treatments in the same period (P<0.05)
试验号 X1NaOH浓度/(mol/L) X2温度/℃ X3时间/h X4料液比 得率/%
1 0.1 60 2 15∶1 2.18±0.02
2 0.1 75 2 10∶1 2.18±0.03
3 0.1 75 4 20∶1 2.37±0.05
4 0.1 75 3 15∶1 2.98±0.02
5 0.2 60 3 15∶1 2.42±0.03
6 0.1 75 3 15∶1 2.96±0.04
7 0.2 75 3 10∶1 2.32±0.02
8 0.1 90 2 15∶1 2.30±0.03
9 0.0 75 3 10∶1 2.18±0.03
10 0.0 75 2 15∶1 2.26±0.01
11 0.2 75 2 15∶1 2.25±0.02
12 0.2 90 3 15∶1 2.32±0.02
13 0.1 75 2 20∶1 2.35±0.02
14 0.1 60 3 20∶1 2.41±0.03
15 0.1 75 4 10∶1 2.21±0.02
16 0.0 60 3 15∶1 2.09±0.01
17 0.2 75 4 15∶1 2.47±0.01
18 0.1 75 3 15∶1 2.95±0.02
19 0.1 90 3 20∶1 2.41±0.01
20 0.1 75 3 15∶1 2.94±0.02
21 0.2 75 3 20∶1 2.55±0.02
22 0.0 90 3 15∶1 2.32±0.02
23 0.0 75 3 20∶1 2.33±0.01
24 0.1 90 4 15∶1 2.26±0.01
25 0.1 75 3 15∶1 2.97±0.00
26 0.0 75 4 15∶1 2.10±0.03
27 0.1 90 3 10∶1 2.23±0.01
28 0.1 60 4 15∶1 2.26±0.02
29 0.1 60 3 10∶1 2.22±0.02
Table 1 Box-Behnken experimental design and results
变异来源 平方和 自由度 均方 F P 显著性
模型 2.14 14 0.15 451.00 <0.000 1 **
X1 0.092 1 0.092 271.27 <0.000 1 **
X2 5.633×10-3 1 5.633×10-3 16.63 0.001 1 **
X3 1.875×10-3 1 1.875×10-3 5.54 0.033 8 *
X4 0.097 1 0.097 286.99 <0.000 1 **
X1X2 0.027 1 0.027 80.38 <0.000 1 **
X1X3 0.036 1 0.036 106.59 <0.000 1 **
X1X4 1.600×10-3 1 1.600×10-3 4.72 0.047 4 *
X2X3 3.600×10-3 1 3.600×10-3 10.63 0.005 7 **
X2X4 2.500×10-5 1 2.500×10-3 0.074 0.789 8
X3X4 2.500×10-5 1 2.500×10-3 0.074 0.789 8
X 1 2 0.66 1 0.66 1 961.13 <0.000 1 **
X 2 2 0.77 1 0.77 2 263.04 <0.000 1 **
X 3 2 0.90 1 0.90 2 657.41 <0.000 1 **
X 4 2 0.59 1 0.59 1 738.04 <0.000 1 **
残差 4.742×10-3 14 3.387×10-4
失拟项 3.742×10-3 10 3.742×10-4 1.50 0.371 4
纯误差 1.000×10-3 4 2.500×10-4
总误差 2.14 28
Table 2 Analysis of variance for the established regression model
Fig.5 Response surface showing the effects of different extraction condition on the yield of melanin from sunflower seed shell (a)NaOH solution and temperature (b)NaOH solution and time (c)NaOH solution and solid to liquid ratio (d)Temperature and time (e)Temperature and solid to liquid ratio (f)Time and solid to liquid ratio
序号 分析 结果
1 颜色 黑色
2 不溶
3 盐酸溶液 不溶
4
甲醇、乙醇、氯仿、乙酸乙酯、石油醚、
正丁醇、丙酮等有机溶剂
不溶
5
氨水、NaOH、KOH、NaHCO3
Na2CO3等碱性溶液
溶解
6 H2O2、NaOCl、KMnO4、K2Cr2O7溶液 脱色
7 FeCl3溶液 棕色絮状物
Table 3 Physicochemical properties of melanin from sunflower seed shell
Fig.6 UV-vis spectra of melanin from sunflower seed shell (a)UV-vis absorption spectrum of the melanin from sunflower seed shell (b)A plot of log of optical density against wavelength
Fig.7 DPPH scavenging activity of melanin from sunflower seed shell
Fig.8 Superoxide anion-scavenging activity of melanin from sunflower seed shell
Fig.9 Reducing power of melanin from sunflower seed shell
Fig.10 Removal efficiency of melanin from sunflower seed shell
[1]   Bonan S, Fedrizzi G, Menotta S, et al. Simultaneous determination of synthetic dyes in foodstuffs and beverages by high-performance liquid chromatography coupled with diode-array detector. Dyes and Pigments, 2013, 99(1): 36-40.
doi: 10.1016/j.dyepig.2013.03.029
[2]   孙长颢. 营养与食品卫生学. 8版. 北京: 人民卫生出版社, 2017.
[2]   Sun C H. Nutrition and food hygiene. 8th. Beijing: People’s Medical Publishing House, 2017.
[3]   Rodríguez-Mena A, Ochoa-Martínez L A, González-Herrera S M, et al. Natural pigments of plant origin: Classification, extraction and application in foods. Food Chemistry, 2023, 398: 133908.
doi: 10.1016/j.foodchem.2022.133908
[4]   Nitteranon V, Kittiwongwattana C, Vuttipongchaikij S, et al. Evaluations of the mutagenicity of a pigment extract from bulb culture of Hippeastrum reticulatum. Food and Chemical Toxicology, 2014, 69: 237-243.
doi: 10.1016/j.fct.2014.04.007 pmid: 24751972
[5]   Amin K A, Hameid H A II, Abd Elsttar A H. Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food and Chemical Toxicology, 2010, 48(10): 2994-2999.
doi: 10.1016/j.fct.2010.07.039 pmid: 20678534
[6]   Zhang H C, Zhan J X, Su K M, et al. A kind of potential food additive produced by Streptomyces coelicolor: characteristics of blue pigment and identification of a novel compound, λ-actinorhodin. Food Chemistry, 2006, 95(2): 186-192.
[7]   Rodriguez-Amaya D B. Natural food pigments and colorants. Current Opinion in Food Science, 2016, 7: 20-26.
doi: 10.1016/j.cofs.2015.08.004
[8]   Ghattavi K, Homaei A, Kamrani E, et al. Melanin pigment derived from marine organisms and its industrial applications. Dyes and Pigments, 2022, 201: 110214.
doi: 10.1016/j.dyepig.2022.110214
[9]   Singh S, Nimse S B, Mathew D E, et al. Microbial melanin: recent advances in biosynthesis, extraction, characterization, and applications. Biotechnology Advances, 2021, 53: 107773.
doi: 10.1016/j.biotechadv.2021.107773
[10]   Pralea I E, Moldovan R C, Petrache A M, et al. From extraction to advanced analytical methods: the challenges of melanin analysis. International Journal of Molecular Sciences, 2019, 20(16): 3943.
doi: 10.3390/ijms20163943
[11]   Ito S, Kolbe L, Weets G, et al. Visible light accelerates the ultraviolet A-induced degradation of eumelanin and pheomelanin. Pigment Cell & Melanoma Research, 2019, 32(3): 441-447.
[12]   Cruz-Hernández M, Velázquez-Herrera F D, Villa-Ruano N, et al. High-performance antifungal nanohybrid materials composed of melanin-clays. Applied Clay Science, 2021, 211: 106201.
doi: 10.1016/j.clay.2021.106201
[13]   Lin T K, Man M Q, Abuabara K, et al. By protecting against cutaneous inflammation, epidermal pigmentation provided an additional advantage for ancestral humans. Evolutionary Applications, 2019, 12(10): 1960-1970.
doi: 10.1111/eva.12858
[14]   Oh J J, Kim J Y, Kim Y J, et al. Utilization of extracellular fungal melanin as an eco-friendly biosorbent for treatment of metal-contaminated effluents. Chemosphere, 2021, 272: 129884.
doi: 10.1016/j.chemosphere.2021.129884
[15]   牟晓红. 向日葵籽壳生产木糖醇的工艺及方法. 化工技术与开发, 2008, 37(8): 44-46.
[15]   Mu X H. Preparation of xylitol with sunflower seed shell. Technology & Development of Chemical Industry, 2008, 37(8): 44-46.
[16]   FAOSTAT. Crops and livestock products. [2022-09-15]. https://www.fao.org/faostat/en/#data/QCL .
[17]   中国产业信息网. 2020年全球及中国葵花籽油产量、消费量及葵花籽贸易情况分析. [2022-09-15]. https://www.markyubio.com/news/show.php?itemid=368 .
[17]   China Industrial Information Network. Analysis of global and China sunflower oil production, consumption and sunflower oil trade in 2020. [2022-09-15]. https://www.markyubio.com/news/show.php?itemid=368 .
[18]   Hou R L, Liu X, Xiang K K, et al. Characterization of the physicochemical properties and extraction optimization of natural melanin from Inonotus hispidus mushroom. Food Chemistry, 2019, 277: 533-542.
doi: 10.1016/j.foodchem.2018.11.002
[19]   王昭玉, 常明昌, 徐丽婧, 等. 灵芝子实体、菌丝体和孢子黑色素的结构表征与理化性质研究. 生物技术通报, 2021, 37(11): 81-91.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0659
[19]   Wang Z Y, Chang M C, Xu L J, et al. Structural characterization, physicochemical properties of melanin from fruiting body, hyphae and spores of Ganoderma lucidum. Biotechnology Bulletin, 2021, 37(11): 81-91.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0659
[20]   Wu C C, Li H, Yin Z W, et al. Isolation, purification, and characterization of novel melanin from the submerged fermentation of Rhizobium radiobacter. Process Biochemistry, 2022, 121: 263-275.
doi: 10.1016/j.procbio.2022.07.009
[21]   Manivasagan P, Venkatesan J, Senthilkumar K, et al. Isolation and characterization of biologically active melanin from Actinoalloteichus sp. MA-32. International Journal of Biological Macromolecules, 2013, 58: 263-274.
doi: 10.1016/j.ijbiomac.2013.04.041
[22]   项锦敏, 赵琼瑜, 远航, 等. 乌鳖黑色素理化性质及其抗氧化活性研究. 天然产物研究与开发, 2021, 33(3): 453-461.
[22]   Xiang J M, Zhao Q Y, Yuan H, et al. Physicochemical properties and antioxidant activities of melanin from Chinese soft-shelled turtle (Pelodiscus sinensis). Natural Product Research and Development, 2021, 33(3): 453-461.
[23]   邹宇, 尹冬梅, 胡文忠, 等. 黑木耳天然黑色素理化性质及其抗氧化活性的研究. 食品工业科技, 2013, 34(5): 118-121.
[23]   Zhou Y, Yi D M, Hu W Z, et al. Physicochemical properties and antioxidant activities of Auricularia auricula melanin. Science and Technology of Food Industry, 2013, 34(5): 118-121.
[24]   刘猛, 吴伟源, 章检明, 等. 核桃青皮甲醇提取物的抗氧化活性研究. 食品研究与开发, 2022, 43(13): 109-113.
[24]   Liu M, Wu W Y, Zhang J M, et al. Antioxidant activity of methanol extract from walnut green husks. Food Research and Development, 2022, 43(13): 109-113.
[25]   沈玥祺, 吴文标. 食品及其原料中的黑色素研究进展. 食品工业科技, 2022, 43(10): 405-416.
[25]   Shen Y Q, Wu W B. Progress of research on melanin in foods and their materials. Science and Technology of Food Industry, 2022, 43(10): 405-416.
[26]   Pralea I E, Moldovan R C, Petrache A M, et al. From extraction to advanced analytical methods: the challenges of melanin analysis. International Journal of Molecular Sciences, 2019, 20: 3943.
doi: 10.3390/ijms20163943
[27]   Shen N, Ren J N, Liu Y X, et al. Natural edible pigments: a comprehensive review of resource, chemical classification, biosynthesis pathway, separated methods and application. Food Chemistry, 2023, 403: 134422.
doi: 10.1016/j.foodchem.2022.134422
[28]   Hung Y C, Sava V M, Makan S Y, et al. Antioxidant activity of melanins derived from tea: comparison between different oxidative states. Food Chemistry, 2002, 78(2): 233-240.
doi: 10.1016/S0308-8146(01)00403-4
[29]   李玥彤, 隋怡, 郝晓伟, 等. 山茱萸叶多糖的理化性质和抗氧化活性. 西北农林科技大学学报(自然科学版), 2019, 47(8): 109-116, 143.
[29]   Li Y T, Sui Y, Hao X W, et al. Physicochemical properties and antioxidant activities of polysaccharide from Fructus corni leaves. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(8): 109-116, 143.
[30]   Lee J, Koo N, Min D B. Reactive oxygen species, aging, and antioxidative nutraceuticals. Comprehensive Reviews in Food Science and Food Safety, 2004, 3(1): 21-33.
doi: 10.1111/j.1541-4337.2004.tb00058.x pmid: 33430557
[31]   冯艳钰, 臧延青. 三种小麦麸皮总黄酮的体外抗氧化活性. 食品与发酵工业, 2021, 47(9): 16-24.
[31]   Feng Y Y, Zang Y Q. Study on the antioxidant activity of total flavonoids from three wheat brans in vitro. Food and Fermentation Industries, 2021, 47(9): 16-24.
[32]   Wang X P, Han M, Dong H, et al. Protective effects of Sepia ink melanin on hepatic tissue in streptozotocin-induced diabetic mice. Journal of Ocean University of China, 2022, 21(5): 1362-1372.
doi: 10.1007/s11802-022-5018-y
[1] LI Ting, LIU Bing, LIN Shan, XIA Xing-xing, ZHAO Ping, LI Pei, FENG Pei-yao, ZHANG Xue-tong, FU Yun-na, YAN De-hui. Advances in Extraction, Isolation and Bioactivity of Polysaccharides from Morel[J]. China Biotechnology, 2022, 42(11): 117-125.
[2] ZHAO Bing-jie,GUO Yan-bin. Advances in Extraction, Purification and Bioactivity of Polysaccharides from Edible Fungi[J]. China Biotechnology, 2022, 42(1/2): 146-159.
[3] CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity[J]. China Biotechnology, 2020, 40(9): 18-27.
[4] WANG Tian-zhu,WU Qing,ZHANG Ning,WANG Dong-jie,XU Zhou,LUO Wei,DU Zong-jun. Advances in Research on Melanin Synthesis and Signaling Pathway in Fish[J]. China Biotechnology, 2020, 40(5): 84-93.
[5] Jing-yun FENG,Ling-qia SU,Jing WU. Synthesis and Extraction of Trehalose from Multiple Enzymes Reaction[J]. China Biotechnology, 2019, 39(7): 65-70.
[6] AN Yun-he, CHENG Xiao-yan, TIAN Yan-jie, MA Kai, GAO Li-juan, WU Hui-juan. Influence of DNA Extraction Method on Microbial Diversity Analysis Through Next Generation Sequencing[J]. China Biotechnology, 2017, 37(11): 12-18.
[7] ZHANG Yu-meng, TONG Mei, LU Xiao-dong, MI Yue, MO Ting, LIU Jin-yi, YAO Wen-bing. Expression of Soluble Anti-TNF-α Fab in E.coli: Optimization for Technological Process[J]. China Biotechnology, 2016, 36(9): 31-37.
[8] HU Zong-fu, ZHU Hong-ji. Application of Phosphate Solubilizing Yeast Pichia farinose FL7 in Phytoextraction of Nickel Contaminated Soil[J]. China Biotechnology, 2015, 35(11): 36-45.
[9] LIU Li, ZHANG Yong-jun, XU Chang-zheng, LUO Feng. A Modified CTAB Method for Isolating Genome DNA from Fungus with Abundant Polysaccharose[J]. China Biotechnology, 2014, 34(5): 75-79.
[10] ZHANG Zheng-yu, WU Mian-bin. Recent Advances in Separation and Purification of Antibiotics[J]. China Biotechnology, 2012, 32(6): 98-103.
[11] CHEN Jie-mei, XU Cong-cong, CHANG Lei, LIU Yong-ping, MIAO Bing-xuan. Study on Optimization of Soybean Meal Solid-state Fermentation Process for Producing Soybean Antioxidative Peptide by Response Surface Methodology[J]. China Biotechnology, 2012, 32(12): 59-65.
[12] GUAN Zheng, CHEN Ai-liang. Review of Different DNA Extraction Methods in Hair Shafts[J]. China Biotechnology, 2012, 32(10): 128-134.
[13] CAI Cui-xia, XIAO Wei-wei, KANG Wen-jie, MA Wen-li. Progress of the Study on the Method of DNA Extraction from Genetically Modified Food[J]. China Biotechnology, 2011, 31(5): 121-125.
[14] . Progress of the Study on the Method of DNA Extraction from Genetically Modified Food[J]. China Biotechnology, 2011, 31(05): 0-0.
[15] ZHOU Lu, LIU Jin-yuan. Comparison of the Extraction Effects of Rice Seedling Apoplast Proteins Using Different Extraction Buffers[J]. China Biotechnology, 2011, 31(01): 51-55.