Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (11): 117-125    DOI: 10.13523/j.cb.2209024
    
Advances in Extraction, Isolation and Bioactivity of Polysaccharides from Morel
LI Ting(),LIU Bing,LIN Shan,XIA Xing-xing,ZHAO Ping***,LI Pei,FENG Pei-yao,ZHANG Xue-tong,FU Yun-na,YAN De-hui
School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Download: HTML   PDF(447KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Morel (Morchella spp.) is a kind of rare edible and medicinal fungus. The polysaccharides extracted from morel have excellent biological activities in terms of anti-cancer, anti-oxidation, hypoglycemic and hypolipidemic effects and immune regulation, and have broad application prospects in the development of food, pharmaceuticals and nutraceuticals. The effective extraction of morel polysaccharide is the basis of its structure analysis and bioactivity research. Different methods of extraction for morel polysaccharides have certain effects on their structures and bioactivities. It was found that the bioactivities are impacted greatly by the characteristics of morel polysaccharides with structure, such as molecular weight, monosaccharide composition and primary structure. Therefore, it is of great significance to investigate the structure of morel polysaccharides to reveal their bioactivity and mechanism of action. The extraction, isolation, structure analysis and bioactivity of morel polysaccharide are summarized, the mechanism of its bioactivity is analyzed, and the future research direction is proposed to provide a theoretical basis for the research and development of morel polysaccharide.



Key wordsMorel polysaccharide      Extraction and isolation      Structural characteristics      Bioactivity     
Received: 12 September 2022      Published: 07 December 2022
ZTFLH:  Q936  
Cite this article:

LI Ting, LIU Bing, LIN Shan, XIA Xing-xing, ZHAO Ping, LI Pei, FENG Pei-yao, ZHANG Xue-tong, FU Yun-na, YAN De-hui. Advances in Extraction, Isolation and Bioactivity of Polysaccharides from Morel. China Biotechnology, 2022, 42(11): 117-125.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2209024     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I11/117

方法 原理 关键参数 种类 参考文献
热水浸提法 多糖是亲水性大分子,水通过细胞壁进入胞内,使多糖等可溶性成分溶出细胞 液料比、提取温度、提取时间、醇沉浓度、醇沉温度、醇沉时间、醇沉pH等 羊肚菌子实体
六妹羊肚菌子实体
粗柄羊肚菌子实体
[9-10]
[11-12]
[13-14]
渗透压法 在高浓度盐溶液条件下,细胞壁溶胀、破壁,多糖通过质壁分离的细胞壁缝隙析出 浸提时间、浸提温度、氯化钠浓度、pH等 羊肚菌菌丝体 [15]
高压脉冲
电场法
压力升高,导致渗透能力增强;保压时,有效成分充分溶解;泄压时,形成压力差,细胞壁和细胞膜在压力差的作用下发生变形或破坏,促进有效成分快速释放至胞外 电场强度脉冲数、时间、温度、液料比等 羊肚菌菌丝体 [16]
超声波辅助
提取法
在超声波的热能、机械作用、剪切力、冲击力及空化效应等多级效应的影响下,细胞壁破坏,分子运动速率增强,有效成分得到更加充分的溶解,加速多糖的析出 超声功率、超声温度、超声时间、料液比等 尖顶羊肚菌子实体
粗柄羊肚菌菌丝体
胞外多糖
[17]
[18]
[19]
酶辅助提取法 在酶辅助条件下,促进多糖溶出、增加多糖析出率 酶类型、酶解pH、酶解时间、酶浓度、酶用量等 羊肚菌子实体
梯棱羊肚菌子实体
[20]
[21]
Table 1 The methods of extraction and isolation of morel polysaccharides
品种 多糖 分子量/Da 单糖组成 糖苷键 端基糖苷键 纯化方式 参考文献
梯棱羊肚菌
Morchella
importuna
MIPB50-W 9.4×105 Glc →4)-α-D-Glcp-(1→
→4,6)-α-D-Glcp-(1→
α-D-Glcp-(1→ DEAE-cellulose
Sephadex G-75
[22]
MIPB50-S-1 4.4×105 Glc →4)-α-D-Glcp-(1→
→4,6)-α-D-Glcp-(1→
→6)-α-D-Glcp-(1→
α-D-Glcp-(1→
MIPW50-1 2.9×104 GlcNAc∶Gal∶Glc∶Man = 1.00∶14.95∶1.53∶10.51 →2,3,6)-α-D-Manp-(1→
→2)-α-D-Galp-(1→
→3,6)-α-D-Manp-(1→
→4)-β-D-Glcp-(1→
→4)-α-D-GlcNAcp-(1→
→6)-α-D-Manp-(1→
→ 6)-α-D-Glcp-(1→
β-D-Glcp-(1→
α-D-Galp-(1→
α-D-GlcNAcp-(1→
DEAE Sepharose
Fast Flow
Sephadex G-75
[23]
梯棱羊肚菌
Morchella
importuna
MIP 1.5×106 Glc∶Man∶Gal = 0.64∶0.55∶0.27 [24]
MIP 1.4×106 Xyl:Glc:Gal:Fuc
=9.21∶8.59∶3.73∶1.00
DEAE cellulose-52
Sephadex G-100
[25]
MIPB70-1 2.1×104 Man∶Gal∶Glc∶GlcNAc =5.61∶7.16∶5.54∶1.00 →3,6)-α-D-Manp-(1→
→2,3,6)-α-D-Manp-(1→
→2)-α-D-Galp-(1→
→6)-α-D-Glcp-(1→
→6)-α-D-Manp-(1→
→4)-α-D-GlcpNAc-(1→
→4)-β-D-Glcp-(1→
α-D-Galp-(1→
α-D-GlcpNAc-(1→
β-D-Glcp-(1→
DEAE SepharoseFast FlowSephadex G-75 [26]
尖顶羊肚菌
Morchella conica
MEP3A 8.1×104 →6)-α-D-Manp-(1→ DEAE cellulose-52
Sephacryl S-300
[27]
六妹羊肚菌
Morchella
sextelat
MSP-II Glc∶Ara∶Gal∶Man∶Rha∶Fuc∶GalUA∶GluUA=34.95∶8.7∶9.55∶4.55∶5.0∶1.45∶12.70∶7.65 DEAE-cellulose
Sephadex G-25
[28]
MSP 2.9×105 Man∶Glc∶Gal = 9.00∶1.00∶6.00 DEAE cellulose-52
Sephadex G-100
[29]
黑脉羊肚菌
Morchella
angusticeps
PMEP-1 4.4×104 Ara∶Man∶Glc∶Gal = 1∶2.37∶4.79∶3.09 →5)-α-Arap-(1→
→6)-β-Galp-(1→
→2)-α-D-Manp -(1→
→4)-α-Glcp-(1→
→2,6)-β-Galp-(1→
→2,6)-β- Manp-(1→
→4,6)-β-Gclp-(1→
β-D-Manp-(1→
α-D-Glcp-(1→
DEAE cellulose
Sephadex G-100
[30]
羊肚菌
Morchella
esculenta
FMP-1 4.7×103 Man∶Glc∶Gal = 1.00∶7.84∶1.24 →4)-α-D-Glcp-(1→
→4,6)-α-D-Glcp-(1→
→6)-α-D-Galp-(1→
→6)-β-D-Manp-(1→
α-D-Glcp-(1→
β-D-Manp-(1→
Superdex G-75 [4]
MEP Glc∶Ga∶Man∶Xyl∶Ara = 3.96∶1.79∶1.52∶0.12∶0.37 [31]
MEP 1-1 1.37×105 Glc∶Gal∶Man ∶Ara = 4.39∶2.15∶1.78∶0.69 DEAE cellulose
Sephadex G-200
MEP 2-3 1.15×104 Glc∶Gal∶Man∶ Xyl∶Ara = 3.70∶1.58∶0.92∶0.76∶2.33
ME-X 1.6×104 DEAE cellulose-52 [5]
MP-1 Glc∶Man∶Gal∶Ara∶Xyl∶Rha = 38.06∶14.43∶17.06∶9.25∶2.08∶0.94 →4)-β-Manp-(1→
→4)-β-D-GlcAp-(1→
→6)-α-D-Glcp-(1→
α-D-Galp-(1→
β-D-Arap-(1→
DEAE Sephadex
A-50
Sephadex G-100
[32]
MP-3 Glc∶Man∶Gal∶Ara∶Xyl∶Rha =27.04∶28.66∶11.12∶9.07∶6.71∶3.22 →2,6)-α-Galp-(1→
→3,4)-β-D-Glcp-(1→
→3)-β-D-Galp-(1→
α-D-Galp-(1→
β-D-Galp-(1→
MP-4 Glc∶Man∶Gal∶Ara∶Xyl∶Rha =24.69∶20.46∶10.22∶7.91∶4.05∶2.83 →4)-β-D-Xylp-(1→
→3)-β-Galp-(1→
→3)-β-Glcp-(1→
Table 2 Structural characteristics of morel polysaccharides
抗肿瘤
类别
活性成分 纯化方式 研究内容 参考
文献
模型 活性
抗宫
颈癌
多糖硫酸化衍生物MSP-SⅠ、MSP-SⅡ、MSP-SⅢ和MSP-SⅣ DEAE Sepharose
Sephadex G-25
体外 HeLa细胞 将HeLa细胞抑制至S期抑制HeLa细胞增殖;促线粒体膜电位呈下降,促进HeLa细胞凋亡 [33]
子实体水溶性多糖MEP 1-1、MEP 2-3 DEAE cellulose
Sephadex G-100
体外 HeLa细胞 抑制HeLa细胞增殖 [31]
MP-1、MP-3和MP-4 DEAE Sephadexa-50
Sephadex G-100
体外 HeLa细胞 诱导HeLa细胞阻滞在G0/G1 [32]
抗乳
腺癌
子实体多糖PMEP DEAE cellulose-52
Sephadex G-100
体外 MDA-MB-2细胞 抑制MDA增殖,促进细胞凋亡。 [34]
子实体多糖MIPB 70-1 DEAE Sepharose Fast Flow Sephadex G-75 体内 4T1乳腺癌
小鼠模型
增强了阿霉素的抗肿瘤活性并抑制肿瘤的生长 [26]
抗肺癌 子实体水溶性多糖MEP 1-1、MEP 2-3 DEAE cellulose-50
Sephadex G-100
体外 A549细胞 抑制A549细胞增殖 [31]
子实体多糖FMP-1
多糖硫酸化衍生物SFMP-1
醇沉粗多糖 体外 NR8383细胞 促进NR8383细胞增殖、抑制NR8383细胞凋亡 [35]
抗肝癌 子实体多PMEP-1 DEAE cellulose-52
Sephadex G-100
体外 SMMC-7721
细胞
抑制SMMC-7721细胞增殖 [7]
抗肝癌 MP-1、MP-3和MP-4 DEAE Sephadexa-50
Sephadex G-100
体外 HepG-2细胞 诱导HepG-2细胞细胞周期阻滞在G0/G1 [32]
Table 3 Research in the antitumor activity of morel polysaccharides
成分 纯化方式 研究内容 参考
文献
模型 活性
体内 S180荷瘤小鼠 增加T淋巴细胞百分率和巨噬细胞吞噬率 [2]
子实体多糖ME-X DEAE cellulose-52 体外 淋巴细胞
T/B、RAW264.7细胞
显著提高免疫细胞增殖能力,可以刺激巨噬细胞吞噬中性红能力 [5]
子实体多糖MIPB50-W、MIPB50-S-1 DEAE cellulose
Sephadex G-75
体外 巨噬细胞、
RAW264.7细胞
显著促进免疫细胞增殖,同时刺激巨噬细胞吞噬中性红能力 [22]
子实体多糖MIPW50-1 DEAE Sepharose Fast Flow
Sephadex G-75
体外 巨噬细胞、
RAW264.7细胞
刺激巨噬细胞功能,增加RAW264.7细胞的吞噬作用,促进NO、TNF-α和IL-6的分泌 [23]
菌丝体多糖MSP-II DEAE cellulose
Sephadex G-25
体外 RAW264.7细胞 增强细胞增殖、吞噬作用,诱导巨噬细胞分泌NO [28]
子实体多糖MIPB-70 DEAE Sepharose Fast Flow
Sephadex G-75
体外 RAW264.7细胞 增强巨噬细胞吞噬功能,促进NO和细胞因子的分泌 [26]
胞外多糖MP-1、MP-3和MP-4 DEAE Sephadex-50
Sephadex G-100
体外 RAW264.7细胞 激活巨噬细胞功能,增加RAW264.7细胞的吞噬作用 [32]
Table 4 Research in the immunomodulatory activities of morel polysaccharides
成分 纯化方式 研究内容 参考
文献
模型 活性
胞外多糖MEP DEAE cellulose-52 体外 脂肪酶活性
胆酸盐结合率
葡萄糖的扩散速率
抑制脂肪酶活性和血液中葡萄糖的扩散速率,甘氨胆酸钠和牛磺胆酸钠的结合率达到了35%和30% [36]
子实体多糖PMEP
多糖硫酸化衍生物SPMEP
羧甲基化衍生物CPMEP
DEAE cellulose-52
Sephadex G-100
体内 高胆固醇饮食
SD大鼠
降低大鼠的血清总胆固醇质量浓度 [37]
[38]
子实体多糖PMEP-1 DEAE cellulose-52
Sephadex G-100
体内 高脂SD大鼠 血清甘油三酯得到提高,低密度脂蛋白胆固醇(LDL-C)和动脉粥样硬化指数(AI)降低 [7]
胞外多糖BEMC 醇沉粗多糖 体内 高脂模型小鼠 改善血清总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、脾肾指数等指标 [39]
Table 5 Research in the hypolipidemic activity of morel polysaccharides
生物活性 评价方法 机制 参考文献
免疫调节 细胞实验RAW264.7 通过作用于与细胞膜TLR4受体,促进NO、IL-6、TNF-α的分泌,增强吞噬功能,激活下游NK/Akt/NF-κB信号通路 [28]
增强吞噬功能及促进IL-6、TNF-α和NO分泌,可诱导TLR2、TLR4激活,MAPK和NF-κB通路得到激活 [22]
通过靶向巨噬细胞细胞膜TLR4受体,激活RAW 264.7细胞下游信号通路,增强了巨噬细胞的吞噬功能,促进了NO和细胞因子的分泌 [26]
细胞实验PC12 增强SOD、CAT和GSH-Px酶活性,抑制caspase-3活性,抑制p38、JNK1/2表达,增强ERK1/2表达,从而抑制NF-κB通路的激活 [45]
降血脂 动物实验
高胆固醇饮食大鼠模型
降低肝脏3-羟基-3-甲基戊二酰CoA还原酶的表达,同时促进7α-羟化酶表达 [37]
抗肺癌 细胞实验
NR8383
下调细胞中mRNA和蛋白质水平上的诱导NO合成(iNOS)和环氧合酶-2(COX-2)表达;抑制NF-κB和抑制IκBα的降解和磷酸化 [35]
抗乳腺癌 细胞实验MDA-MB-2 抑制Bcl-2蛋白表达,促进Bax表达,同时增加Bax/Bcl-2值 [34]
Table 6 Research in the bioactivity mechanism of morel polysaccharides
[1]   么越, 荣丹, 唐梦瑜, 等. 羊肚菌药用价值及产品开发现状. 中国食用菌, 2022, 41(7): 13-17, 21.
[1]   Yao Y, Rong D, Tang M Y, et al. Medical value and product development status of Morchella spp. Edible Fungi of China, 2022, 41(7): 13-17, 21.
[2]   陈彦, 潘见, 周丽伟, 等. 羊肚菌胞外多糖抗肿瘤作用的研究. 食品科学, 2008, 29(9): 553-556.
[2]   Chen Y, Pan J, Zhou L W, et al. Antitumor activity of extracellular polysaccharides from Morchella esculenta. Food Science, 2008, 29(9): 553-556.
[3]   柏秋月, 邓百万, 杨学英, 等. 4株羊肚菌胞外多糖含量及其生物活性的研究. 食品研究与开发, 2020, 41(8): 25-31.
[3]   Bai Q Y, Deng B W, Yang X Y, et al. Study on extracellular polysaccharide content and biological activity of four Morchella strains. Food Research and Development, 2020, 41(8): 25-31.
[4]   Cai Z N, Li W, Mehmood S, et al. Structural characterization, in vitro and in vivo antioxidant activities of a heteropolysaccharide from the fruiting bodies of Morchella esculenta. Carbohydrate Polymers, 2018, 195: 29-38.
doi: 10.1016/j.carbpol.2018.04.069
[5]   黄瑶, 蒋琳, 刘影, 等. 羊肚菌多糖提取、分离纯化及免疫调节活性. 生物加工过程, 2018, 16(6): 35-41.
[5]   Huang Y, Jiang L, Liu Y, et al. Extraction, isolation, purification and immunoregulatory activity of polysaccharides from Morehella esculenta. Chinese Journal of Bioprocess Engineering, 2018, 16(6): 35-41.
[6]   董雨菡. 羊肚菌酶提子实体多糖的抗氧化、降血脂和器官保护作用. 泰安: 山东农业大学, 2019.
[6]   Dong Y H. Antioxidant, anti-hyperlipidemia and organic protection effects of enzyme-assisted polysaccharide from Morehella esculenta. Taian: Shandong Agricultural University, 2019.
[7]   明建, 曾凯芳, 赵国华, 等. 羊肚菌水溶性多糖PMEP-1降血脂作用研究. 食品科学, 2009, 30(17): 285-288.
[7]   Ming J, Zeng K F, Zhao G H, et al. Hypolipidemic activity of water soluble polysaccharide PMEP-1 from Morchella esculenta (L.) pers. Food Science, 2009, 30(17): 285-288.
[8]   Pan X, Xu L J, Meng J L, et al. Ultrasound-assisted deep eutectic solvents extraction of polysaccharides from Morchella importuna: optimization, physicochemical properties, and bioactivities. Frontiers in Nutrition, 2022, 9: 912014.
doi: 10.3389/fnut.2022.912014
[9]   罗倩, 邹荣灿, 刘明月, 等. 羊肚菌多糖的提取分离纯化及保健功效研究进展. 食品研究与开发, 2019, 40(15): 211-216.
[9]   Luo Q, Zou R C, Liu M Y, et al. Research progress of extraction, isolation, purification and health benefits of polysaccharides in Morchella. Food Research and Development, 2019, 40(15): 211-216.
[10]   任嘉兴, 张锦华, 白宝清, 等. 羊肚菌多糖提取工艺优化及抗氧化性研究. 山西农业科学, 2018, 46(7): 1199-1203.
[10]   Ren J X, Zhang J H, Bai B Q, et al. Study on optimization of extraction technology of polysaccharide and its antioxidant activity from Morchella esculentum. Journal of Shanxi Agricultural Sciences, 2018, 46(7): 1199-1203.
[11]   王珍珍, 官月, 刘洋, 等. 六妹羊肚菌多糖的提取工艺优化及结构表征和抗氧化活性. 菌物学报, 2019, 38(9): 1548-1558.
[11]   Wang Z Z, Guan Y, Liu Y, et al. Extraction process optimization, structural characterization and antioxidant activities of polysaccharide from Morchella sextelata. Mycosystema, 2019, 38(9): 1548-1558.
[12]   刘璐, 兰阿峰, 郭素芬, 等. 羊肚菌胞外多糖提取工艺研究. 生物技术, 2019, 29(4): 382-386, 354.
[12]   Liu L, Lan A F, Guo S F, et al. Study on the extraction technology of extracellular polysaccharide from morel. Biotechnology, 2019, 29(4): 382-386, 354.
[13]   李益, 杨小斌, 武林贺, 等. 响应面法优化羊肚菌多糖制备工艺及其抗氧化活性研究. 医学食疗与健康, 2020, 18(2): 23-24.
[13]   Li Y, Yang X B, Wu L H, et al. Optimization of the preparation process and antioxidant activity of morel polysaccharide by response surface methodology. Medical Diet and Health, 2020, 18(2): 23-24.
[14]   吴孔阳, 原瑞材, 杨同香, 等. 响应面法优化羊肚菌多糖提取工艺研究. 洛阳师范学院学报, 2021, 40(2): 19-23.
[14]   Wu K Y, Yuan R C, Yang T X, et al. Optimization of extraction technology of Morchella esculenta polysaccharides by response surface methodology. Journal of Luoyang Normal University, 2021, 40(2): 19-23.
[15]   张娇, 赵航, 刘超. 渗透压法提取羊肚菌胞内多糖工艺优化. 食品工业, 2015, 36(11): 167-171.
[15]   Zhang J, Zhao H, Liu C. Extraction processing of Morchella esculenta intracel ular polysaccharides by hypertonic technology. The Food Industry, 2015, 36(11): 167-171.
[16]   张玉, 刘超. 高压脉冲电场法提取羊肚菌多糖及其分离纯化. 食品工业, 2016, 37(12): 54-58.
[16]   Zhang Y, Liu C. Extraction processing of Morchella esculenta endo-cel ular polysaccharides by pulsed electric field. The Food Industry, 2016, 37(12): 54-58.
[17]   毕博, 于荣利. 尖顶羊肚菌多糖的超声波辅助提取工艺优化及其对肝损伤小鼠抗氧化活性的影响. 食用菌学报, 2016, 23(3): 53-56.
[17]   Bi B, Yu R L. Ultrasound-assisted extraction of polysaccharides from Morchella conica and their effects on selected antioxidant indices in mice with CCl4-induced liver injury. Acta Edulis Fungi, 2016, 23(3): 53-56.
[18]   李美华, 孙玉侠, 曾阳, 等. 粗柄羊肚菌菌丝体多糖及胞外多糖的提取工艺. 菌物研究, 2017, 15(3): 195-200.
[18]   Li M H, Sun Y X, Zeng Y, et al. Extraction process of polysaccharide content of mycelium and extracellular polysaccharide from Morchella crassipes. Journal of Fungal Research, 2017, 15(3): 195-200.
[19]   韩融冰, 赵玉卉, 路学, 等. 羊肚菌多糖提取工艺研究. 北方园艺, 2018(23): 150-155.
[19]   Han R B, Zhao Y H, Lu D X, et al. Study on extraction process of Morchella polysaccharides. Northern Horticulture, 2018(23): 150-155.
[20]   范三红, 任嘉兴, 张锦华, 等. 响应面优化羊肚菌多糖提取工艺及抗氧化性. 食品工业科技, 2019, 40(6): 179-185, 192.
[20]   Fan S H, Ren J X, Zhang J H, et al. Extraction optimization of Morchella esculenta polysaccharides by response surface methodology and its antioxidant activity. Science and Technology of Food Industry, 2019, 40(6): 179-185, 192.
[21]   闫永兰. 酶提羊肚菌子实体多糖的抗氧化和抗衰老作用. 中国食用菌, 2020, 39(1): 42-45, 60.
[21]   Yan Y L. Antioxidation and anti-aging effects of polysaccharides from zymotic fruit bodies of Morchella. Edible Fungi of China, 2020, 39(1): 42-45, 60.
[22]   Wen Y, Bi S X, Hu X J, et al. Structural characterization and immunomodulatory mechanisms of two novel glucans from Morchella importuna fruiting bodies. International Journal of Biological Macromolecules, 2021, 183: 145-157.
doi: 10.1016/j.ijbiomac.2021.04.084
[23]   Wen Y, Peng D, Li C L, et al. A new polysaccharide isolated from Morchella importuna fruiting bodies and its immunoregulatory mechanism. International Journal of Biological Macromolecules, 2019, 137: 8-19.
doi: 10.1016/j.ijbiomac.2019.06.171
[24]   何畅, 徐丽婧, 常明昌, 等. 梯棱羊肚菌子实体多糖提取优化及结构初探. 食用菌学报, 2021, 28(2): 77-88.
[24]   He C, Xu L J, Chang M C, et al. Extraction optimization and structural characterization of polysaccharides from Morchella importuna fruiting body. Acta Edulis Fungi, 2021, 28(2): 77-88.
[25]   彭天祥, 张娟, 张利, 等. 梯棱羊肚菌多糖的理化性质及神经保护活性研究. 现代食品科技, 2019, 35(9): 87-95.
[25]   Peng T X, Zhang J, Zhang L, et al. Physical and chemical properties of polysaccharide isolated from the fruiting bodies of Morchella importuna and its neuroprotective effect. Modern Food Science and Technology, 2019, 35(9): 87-95.
[26]   Peng D, Wen Y, Bi S X, et al. A new GlcNAc-containing polysaccharide from Morchella importuna fruiting bodies: structural characterization and immunomodulatory activities in vitro and in vivo. International Journal of Biological Macromolecules, 2021, 192: 1134-1149.
doi: 10.1016/j.ijbiomac.2021.10.051 pmid: 34656541
[27]   余梦瑶, 许晓燕, 江南, 等. 尖顶羊肚菌菌丝体胞外多糖的分离纯化及结构研究. 四川大学学报(自然科学版), 2013, 50(6): 1373-1378.
[27]   Yu M Y, Xu X Y, Jiang N, et al. Isolation and characterization of an extra-cellular polysaccharide from Morchella conica fermentation broth. Journal of Sichuan University (Natural Science Edition), 2013, 50(6): 1373-1378.
[28]   Meng X, Che C C, Zhang J M, et al. Structural characterization and immunomodulating activities of polysaccharides from a newly collected wild Morchella sextelata. International Journal of Biological Macromolecules, 2019, 129: 608-614.
doi: S0141-8130(18)36907-1 pmid: 30771397
[29]   熊川, 罗强, 李强, 等. 六妹羊肚菌多糖部分理化性质及抗氧化活性研究. 天然产物研究与开发, 2017, 29(7): 1182-1187, 1153.
[29]   Xiong C, Luo Q, Li Q, et al. Physical and chemical properties of polysaccharide isolated from the fruiting bodies of Morchella sextelata and its antioxidant effect. Natural Product Research and Development, 2017, 29(7): 1182-1187, 1153.
[30]   明建, 曾凯芳, 赵国华, 等. 羊肚菌水溶性多糖PMEP-1的分离纯化与结构特征分析. 食品科学, 2009, 30(15): 104-108.
[30]   Ming J, Zeng K F, Zhao G H, et al. Isolation, purification and structural characteristics of water soluble polysaccharide PMEP-1 from Morchella esculenta (L.) pers. Food Science, 2009, 30(15): 104-108.
[31]   李敬, 周伟杰, 赵士豪, 等. 羊肚菌多糖的分离纯化及其体外抗氧化、抗肿瘤活性研究. 天然产物研究与开发, 2016, 28(9): 1351-1356.
[31]   Li J, Zhou W J, Zhao S H, et al. Isolation, purification, antioxidant and antitumor activities of polysaccharides from Morchella esculenta. Natural Product Research and Development, 2016, 28(9): 1351-1356.
[32]   Li S H, Gao A, Dong S, et al. Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta. International Journal of Biological Macromolecules, 2017, 96: 26-34.
doi: 10.1016/j.ijbiomac.2016.12.007
[33]   孟欣, 刘金锋. 羊肚菌多糖硫酸化衍生物的制备、结构分析及体外抗肿瘤活性. 曲阜师范大学学报(自然科学版), 2020, 46(2): 85-90.
[33]   Meng X, Liu J F. Preparation, structure analysis and antitumor activity of sulfonated derivatives of Morchella polysaccharides. Journal of Qufu Normal University (Natural Science), 2020, 46(2): 85-90.
[34]   李谣, 陈金龙, 王丽颖, 等. 羊肚菌多糖抑制人乳腺癌细胞MDA-MB-231增殖和诱导细胞凋亡研究. 食品科学, 2016, 37(21): 214-218.
[34]   Li Y, Chen J L, Wang L Y, et al. Polysaccharides from Morchella angusticeps peck inhibit cell proliferation and induce apoptosis in MDA-MB-231 human breast cancer cells. Food Science, 2016, 37(21): 214-218.
[35]   Li W, Cai Z N, Mehmood S, et al. Anti-inflammatory effects of Morchella esculenta polysaccharide and its derivatives in fine particulate matter-treated NR8383 cells. International Journal of Biological Macromolecules, 2019, 129: 904-915.
doi: 10.1016/j.ijbiomac.2019.02.088
[36]   李井雷, 刘玉婷, 宗帅, 等. 羊肚菌胞外多糖体外降血糖降血脂活性研究. 食品研究与开发, 2020, 41(16): 39-45.
[36]   Li J L, Liu Y T, Zong S, et al. In vitro hyperglycemic and hypolipidemic activity of Morchella esculenta extracellular polysaccharides. Food Research and Development, 2020, 41(16): 39-45.
[37]   唐瑜婉, 张月巧, 李瑶, 等. 硫酸化羊肚菌多糖调控胆固醇代谢作用. 食品科学, 2019, 40(21): 136-142.
[37]   Tang Y W, Zhang Y Q, Li Y, et al. Regulation of cholesterol metabolism by sulfated polysaccharides from Morchella angusticeps peck. Food Science, 2019, 40(21): 136-142.
[38]   Li Y, Yuan Y, Lei L, et al. Carboxymethylation of polysaccharide from Morchella angusticepes Peck enhances its cholesterol-lowering activity in rats. Carbohydrate Polymers, 2017, 172: 85-92.
doi: 10.1016/j.carbpol.2017.05.033
[39]   殷伟伟, 张松, 吴金凤. 尖顶羊肚菌活性提取物降血脂作用的研究. 菌物学报, 2009, 28(6): 873-877.
[39]   Yin W W, Zhang S, Wu J F. Hypolipidemic effect of the bioactive extract from Morchella conica. Mycosystema, 2009, 28(6): 873-877.
[40]   卢可可, 谭玉荣, 吴素蕊, 等. 不同产地尖顶羊肚菌多酚组成及抗氧化活性研究. 食品科学, 2015, 36(7): 6-12.
[40]   Lu K K, Tan Y R, Wu S R, et al. Polyphenol components and antioxidant activity of Morchella conica Pers. from three different habitats. Food Science, 2015, 36(7): 6-12.
[41]   廖霞, 李苇舟, 郑少杰, 等. 黑脉羊肚菌多酚分级制备及其抗氧化活性. 食品科学, 2017, 38(23): 26-31.
[41]   Liao X, Li W Z, Zheng S J, et al. Fractionation and antioxidant activity of polyphenols from Morchella angusticeps Peck. Food Science, 2017, 38(23): 26-31.
[42]   杨芳, 王新风, 翁良, 等. 两种羊肚菌胞内多糖体外抗氧化性. 食品科学, 2010, 31(23): 76-78.
[42]   Yang F, Wang X F, Weng L, et al. Antioxidant activity of intracellular polysaccharides (IPS) from Morchella esculenta L. Food Science, 2010, 31(23): 76-78.
[43]   Dong Y H, Qi Y R, Liu M, et al. Antioxidant, anti-hyperlipidemia and hepatic protection of enzyme-assisted Morehella esculenta polysaccharide. International Journal of Biological Macromolecules, 2018, 120: 1490-1499.
doi: 10.1016/j.ijbiomac.2018.09.134
[44]   林杉, 赵萍, 付云娜, 等. 羊肚菌胞外多糖液态发酵培养基配方优化及其体外降血糖活性. 食品工业科技, 2022, 43(20): 196-203.
[44]   Lin S, Zhao P, Fu Y N, et al. Optimization of liquid fermentation medium formulation of Morchella eohespera exopolysaccharide and its hypoglycemic activity in vitro. Science and Technology of Food Industry, 2022, 43(20): 196-203.
[45]   Xiong C, Li Q, Chen C, et al. Neuroprotective effect of crude polysaccharide isolated from the fruiting bodies of Morchella importuna against H2O2-induced PC12 cell cytotoxicity by reducing oxidative stress. Biomedicine & Pharmacotherapy, 2016, 83: 569-576.
doi: 10.1016/j.biopha.2016.07.016
[1] WANG Yi-han,LI Hai-yan,XUE Yong-chang. The Structural Characteristics and Engineering Reconstruction of Flavin-dependent Halogenase[J]. China Biotechnology, 2021, 41(4): 74-80.
[2] Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin[J]. China Biotechnology, 2019, 39(7): 100-107.
[3] Min-hua XU,Jing-jing ZHANG,Xiao-bao JIN,Xia-bo LI,Yan WANG,Yan MA. Cloning\Expression and Bioactivity of the Chitinase Gene ChiA from the Endophytes of Periplaneta americana[J]. China Biotechnology, 2019, 39(1): 31-37.
[4] Jian-xue TANG,Yong-le XIAO,Jun-jie PENG,Shi-ji ZHAO,Xiao-ping WAN,Rong GAO. Expression of Fusion Antibacterial Peptide in Recombinant Pichia pastoris and Its Bioactivity In Vitro[J]. China Biotechnology, 2018, 38(6): 9-16.
[5] Jia-wei XU,Hua HE,Jing ZHANG,Chu-chao LEI,Hong CHENG,Yong-zhen HUANG. Research Progress on the Structure and Function of Transcription Factor KLF8 Gene[J]. China Biotechnology, 2018, 38(4): 90-95.
[6] WANG Lan, XU Gang-ling, GAO Kai, WANG Jun-zhi. Progress in Research and Development of Bioactivity Determination of Antibody-based Therapeutics[J]. China Biotechnology, 2015, 35(6): 101-108.
[7] SUN Jing, WANG Bin, DUAN Zhi-qing, HU Ning-zhu, LI Jian-fang, LI Yan-han, HU Yun-zhang. Expression, Purification and Bioactivity Identification of Recombinant Human Leukemia Inhibitory Factor (hLIF) Fusion Protein[J]. China Biotechnology, 2013, 33(5): 50-55.
[8] LU Qing-peng, XU Zhen-hong, SI Jin-song, DOU Wen-fang. The Disruption of STE13 Gene in Pichia pastoris Improves the Expression and Bioactivity of GGH[J]. China Biotechnology, 2013, 33(4): 28-33.
[9] LUO Li, HE Yong-zhi, ZHANG Yong-xia, WANG Ming-rong. Advances in the Study of non-classical Inclusion Bodies[J]. China Biotechnology, 2013, 33(1): 114-121.
[10] TANG Xi-xiang, YI Zhi-wei, LI Ning, MA Qun, LI Hui, QIN Dan, XIAO Xiang. Bioactivity Screening of Fermentation Crude Extracts from Deep Sea Metagenomic Library Clones[J]. China Biotechnology, 2011, 31(06): 58-63.
[11] LI Zhuang-lin, YAO Xue-jing, YUAN Gui-yong. Expression, Purification and Bioactivity Research of Human Angiostatin Kringles 1-3[J]. China Biotechnology, 2011, 31(01): 24-28.
[12] LI Zhao-Feng, GU Zheng-Biao, DU Guo-Cheng, TUN Jing, CHEN Jian. Structural Characteristics and Catalytic Mechanisms of Cyclodextrin Glycosyltransferase[J]. China Biotechnology, 2010, 30(06): 144-150.
[13] . Anticancer Agents from Endophytic Fungi[J]. China Biotechnology, 2009, 29(01): 93-104.
[14] . Expression and Purification of Human Augmenter of Liver Regeneration in Pichia Pastoris and Evaluation of Its Bioactivity in Vitro[J]. China Biotechnology, 2007, 27(6): 22-26.
[15] . A primary study on antitumor activity of deep-sea microorganisms isolated from the tropical Pacific Ocean[J]. China Biotechnology, 2007, 27(10): 81-86.