Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (3): 27-37    DOI: 10.13523/j.cb.2107020
    
Cloning and Analysis of Novel Functional Genes in Halomonas alkaliphila DSM 16354 T
JIA Gui-yan1,WANG Yong-jie1,CHEN Zhi-kang1,CHEN Xing1,YIN Kui-de1,LI Wen2,WANG Yan-hong1,3,**()
1 College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
2 Heilongjiang Zhenbao Island Wetland National Nature Reserve Administration, Hulin 158419, China
3 Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-weast in Cold Region, Daqing 163319, China
Download: HTML   PDF(3151KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Halophilic bacteria are widely distributed and have strong adaptability, but the research on their mechanism is not deep enough. In order to strengthen the exploration and research on the mechanism of salt tolerance of halophilic bacteria, potential genes related to salt tolerance were screened from H. alkaliphila DSM 16354 T, informatics analysis was carried out, and the physiological functions of the related proteins were verified. Methods: Using the combination of gene library screening and functional complementarity, through the salt tolerance functional complementarity experiment with E.coli salt sensitive defective strain KNabc (ΔnhaAΔnhaBΔchaA), the protein coding gene with salt tolerance function was screened, and then the reverse transport activity and substrate affinity of the protein were determined by fluorescence quenching recovery experiment. Results: Two protein coding genes with salt tolerance function were screened. Bioinformatics analysis showed that the gene encoded membrane proteins with unknown function from DUF1538(domain of unknown function with No.1538 family), named DUF1 and DUF2, respectively. Phylogenetic tree analysis showed that DUF1 and DUF2 from H. alkaliphila DSM 16354 T belonged to an independent branch. It was predicted that these two proteins may be new members of DUF1538 family transporters. The physiological functions of DUF1 and DUF2 were analyzed which did not have salt tolerance when expressed alone, but showed significant salt tolerance when expressed together, indicating that duf1 and duf2 subunits jointly supported the salt tolerance function of the protein. The activity of protein DUF1-2 reverse transport assay showed that the two-component protein DUF1-2 had Na + (Li+、K+)/H+ antiporter activity. Conclusion: The selected duf1 and duf2 transporters had salt-alkali tolerance function and antiporter activity when they were co-expressed. This laid a foundation for screening new DUF1538 family transporter genes and further exploring the function of DUF1538 family transporters.



Key wordsH. alkaliphila      DUF1538 family transporter      Na+/H+ antiporter      Clone      Bioinformatics     
Received: 06 July 2021      Published: 07 April 2022
ZTFLH:  Q782  
Corresponding Authors: Yan-hong WANG     E-mail: wyh_03@126.com
Cite this article:

JIA Gui-yan,WANG Yong-jie,CHEN Zhi-kang,CHEN Xing,YIN Kui-de,LI Wen,WANG Yan-hong. Cloning and Analysis of Novel Functional Genes in Halomonas alkaliphila DSM 16354 T. China Biotechnology, 2022, 42(3): 27-37.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2107020     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I3/27

引物 序列5'-3'
DUF1 上游引物 5'-CATATGATATTACTCACGATTTTC-3'
DUF1 下游引物 5'-GGATCCTTAAAGCGCATTATTATCTCC-3'
DUF2 上游引物 5'-CATATGAATATAGTTTATTCGCTT-3'
DUF2 下游引物 5'-GGATCCTTAGGTGCTTCCCGTCACTAA-3'
DUF1-2 上游引物 5'-CATATGATATTACTCACGATTTTC-3'
DUF1-2 下游引物 5'-GGATCCTTAGGTGCTTCCCGTCACTAA-3'
Table 1 Primer sequences
Fig.1 Sequence analysis result in recombinant plasmid The mapping of the inserted DNA fragment in the recombinant plasmid pUC-wyh1 and subcloning strategy of duf1 gene, duf2 gene or both. Subcloning of duf1 gene, duf2 gene or both were carried out by PCR amplification, purification and re-ligation into a cloning vector pUC18. The line arrows stand for the primers for subcloning of the different ORFs by PCR
Fig.2 Construction of phylogenetic development tree
Fig.3 Topological structure of protein (a) Topological structure of DUF1 protein (b) Topological structure of DUF2 protein
Fig.4 Salt tolerance and alkaline pH resistance of recombinant strain (a) Growth status under different NaCl concentrations (b) Growth status under different LiCl concentrations (c) Growth status under different pH conditions without salt (d) Growth status under different pH conditions with salt ions
Fig.5 Assays for Na+(Li+, K+)/H+ antiport activity in the everted membrane vesicles (a), (c) and(e)are the fluorescence values of Na+, Li+ and K+ transported by KNabc/pET19(b) with empty carrier (b),(d)and(f)are the fluorescence values of KNabc with protein DUF1-2 for Na+, Li+ and K+
Fig.6 pH-dependent activity profile of protein Na+/H+ antiport activity (filled circle), Li+/H+ antiport activity (filled square) and K+/ H+ antiport activity (filled triangle) were measured at the indicated pH values. The wavelength of excitation light was 492 nm and fluorescence was monitored at 526 nm
Fig.7 Calculation of K0.5 values of DUF1-2 for Na+, Li+ and K+ (a) Calculation of K0.5 values of DUF1-2 for Na+ (b) Calculation of K0.5 values of DUF1-2 for Li+ (c) Calculation of K0.5 values of DUF1-2 for K+
[1]   Kushner D J. Life in high salt and solute concentrations:halophilic bacteria//Anagnostopoulos G D. Microbial Life in Extreme Environments, London: Academic Press, 1978: 317-368.
[2]   刘莹, 张继天, 史雅颖. 嗜盐菌的研究进展. 科技创新与应用, 2017(8):22.
[2]   Liu Y, Zhang J T, Shi Y Y. Research progress of halophilic bacteria. Technology Innovation and Application, 2017(8):22.
[3]   李红, 李小康, 鱼涛, 等. 嗜盐微生物降解石油烃污染物研究进展. 现代化工, 2019, 39(4):49-52, 54.
[3]   Li H, Li X K, Yu T, et al. Research progress on degradation of petroleum hydrocarbon pollutants by halophilic microorganisms. Modern Chemical Industry, 2019, 39(4):49-52, 54.
[4]   李星志. 小麦内生耐盐细菌分离鉴定及成团泛菌YN1增强小麦耐盐分析. 泰安: 山东农业大学, 2019.
[4]   Li X Z. Isolation and identification of salt tolerante endophytic bacteria from wheat plant and the role of Pantoea agglomerans YN1 in plant salt tolerance improvement. Taian: Shandong Agricultural University, 2019.
[5]   任培根, 周培瑾. 中度嗜盐菌的研究进展. 微生物学报, 2003, 43(3):427-431.
[5]   Ren P G, Zhou P J. Reseach progress of moderately halophilic eubacteria. Acta Microbiologica Sinica, 2003, 43(3):427-431.
[6]   邹小玲, 余江涛, 倪国. 相容性溶质对高盐废水生物处理应用研究进展. 应用化工, 2019, 48(7):1720-1723.
[6]   Zou X L, Yu J T, Ni G. Advances in the application of compatible solutes to biological treatment of high salt wastewater. Applied Chemical Industry, 2019, 48(7):1720-1723.
[7]   潘晶, 黄翠华, 罗君, 等. 盐胁迫对植物的影响及AMF提高植物耐盐性的机制. 地球科学进展, 2018, 33(4):361-372.
[7]   Pan J, Huang C H, Luo J, et al. Effects of salt stress on plant and the mechanism of arbuscular mycorrhizal fungi enhancing salt tolerance of plants. Advances in Earth Science, 2018, 33(4):361-372.
[8]   王艳红, 尹圣祥, 王吉宏, 等. 盐单胞菌YH-I中MFS超家族转运蛋白基因的克隆、生物信息学分析及其功能初步验证. 中国生物制品学杂志, 2018, 31(5):473-478, 484.
[8]   Wang Y H, Yin S X, Wang J H, et al. Cloning, bioinformatic analysis and preliminary functional identification of MFS transporter gene from Halomonas YH-I. Chinese Journal of Biologicals, 2018, 31(5):473-478, 484.
[9]   陈星宇, 马信, 孙长龙, 等. 嗜盐微生物的研究进展. 盐科学与化工, 2019, 48(2):1-4.
[9]   Chen X Y, Ma X, Sun C L, et al. The research progress of halophilic microorganisms. Journal of Salt Science and Chemical Industry, 2019, 48(2):1-4.
[10]   宋娜. 嗜碱盐单胞菌中新型的NhaD型钠/氢逆向转运蛋白基因的克隆与功能分析. 哈尔滨: 东北农业大学, 2017.
[10]   Song N. Cloning and identification of a novel NhaD-type Na+/H+ antiporter from Halomonas alkaliphila. Harbin: Northeast Agricultural University, 2017.
[11]   孟琳. 肇东盐单胞菌中耐盐碱基因筛选及DUF1538与DUF2062家族成员的耐盐碱功能鉴定. 哈尔滨: 东北农业大学, 2017.
[11]   Meng L. Screening of saline-alkaline tolerant genes from Halomonas zhaodongensis and analysis on saline-alkaline tolerance of DUF1538 and DUF2062 family members. Harbin: Northeast Agricultural University, 2017.
[12]   Meng L, Meng F K, Zhang R, et al. Characterization of a novel two-component Na+(Li+, K+)/H+ antiporter from Halomonas zhaodongensis. Scientific Reports, 2017, 7:4221.
doi: 10.1038/s41598-017-04236-0 pmid: 28652569
[13]   Yang L F, Jiang J Q, Zhang B, et al. A primary sodium pump gene of the moderate halophile Halobacillus dabanensis exhibits secondary antiporter properties. Biochemical and Biophysical Research Communications, 2006, 346(2):612-617.
doi: 10.1016/j.bbrc.2006.05.181
[14]   王海洪, 樊振川, 曾静, 等. 盐单胞菌C6与耐盐有关DNA片段的克隆和序列分析. 农业生物技术学报, 1999, 7(3):269-274.
[14]   Wang H H, Fan Z C, Zeng J, et al. Cloning and sequencing of the DNA fragment related to salt tolerance of Halomonas sp. C6. Journal of Agricultural Biotechnology, 1999, 7(3):269-274.
[15]   潘耀谦. 聚合酶链反应(PCR)技术——一种可用于肉制品检验的新方法. 肉品卫生, 2000(2):12-15, 19.
[15]   Pan Y Q. Polymerase chain reaction PCR: a new method for meat products inspection. Meat Hygiene, 2000(2):12-15, 19.
[16]   贺艳芬, 徐源, 吴海娥, 等. 荚膜红细菌DSM1710中硫化物醌还原酶基因的克隆、表达及活性分析. 中国畜牧兽医, 2012, 39(2):6-10.
[16]   He Y F, Xu Y, Wu H E, et al. Cloning, prokaryotic expression and activity analysis of sulfide-quinone reductase(SQR) from Rhodobacter capsulatus DSM1710. China Animal Husbandry & Veterinary Medicine, 2012, 39(2):6-10.
[17]   贝为成, 何启盖, 方六荣, 等. 猪传染性胸膜肺炎放线杆菌毒素apxII基因无药物抗性标记突变株HBC-/GFP+的构建及其生物学特性研究//湖北省生物工程学会, 湖北省生物工程学会2004年年会学术报告及论文摘要汇编. 武汉: 湖北省生物工程学会, 2004: 72.
[17]   Bei W C, He Q G, Fang L R, et al. Construction and biological characteristics of a drug-free mutant HBC-/GFP+ of Actinobacillus pleuropneumoniae toxin apxII gene and its biological characteristics//Hubei Society of Bioengineering, Proceedings and Abstracts of 2004 Annual Meeting of Hubei Society of Bioengineering. Wuhan: Hubei Society of Bioengineering, 2004: 72.
[18]   廖涛, 陈建平, 王涛, 等. 嗜肺军团菌热休克蛋白60基因在大肠杆菌中的表达. 中国现代医学杂志, 2006, 16(6):862-865.
[18]   Liao T, Chen J P, Wang T, et al. Expression of heat shock protein 60 gene of Legionella pneumophila in E.coli. China Journal of Modern Medicine, 2006, 16(6):862-865.
[19]   谢德金. 草珊瑚叶片cDNA文库构建及EST分析. 福州: 福建农林大学, 2016.
[19]   Xie D J. Construction of cDNA library and expressed sequence tags(EST) analysis of Sarcandra glabra leaf. Fuzhou: Fujian Agriculture and Forestry University, 2016.
[20]   毛普加, 冯金, 洪愉, 等. 甲型副伤寒沙门菌噬菌体的分离及其生物学特性的分析. 中国生物制品学杂志, 2014, 27(4):458-462, 466.
[20]   Mao P J, Feng J, Hong Y, et al. Isolation and biological characters of bacteriophages of Salmonella paratyphi A. Chinese Journal of Biologicals, 2014, 27(4):458-462, 466.
[21]   Fakharany E E, Hassan M. A universal method for extraction of genomic DNA from various microorganisms using lysozyme. New Biotechnology, 2016, 33:S210.
[22]   Jiang J Q, Wang L, Zhang H, et al. Putative paired small multidrug resistance family proteins PsmrAB, the homolog of YvdSR, actually function as a novel two-component Na+/H+ antiporter. FEMS Microbiology Letters, 2013, 338(1):31-38.
doi: 10.1111/fml.2012.338.issue-1
[23]   Meng L, Hong S, Liu H N, et al. Cloning and identification of Group 1 mrp operon encoding a novel monovalent cation/proton antiporter system from the moderate halophile Halomonas zhaodongensis. Extremophiles: Life Under Extreme Conditions, 2014, 18(6):963-972.
doi: 10.1007/s00792-014-0666-5
[24]   朱若林, 沈娇娇, 蒋书东, 等. 鱼类病毒性出血性败血症病毒基质蛋白的原核表达及其亚细胞定位. 中国水产科学, 2019, 26(1):214-220.
[24]   Zhu R L, Shen J J, Jiang S D, et al. Prokaryotic expression and subcellular localization of the matrix protein of the viral hemorrhagic septicemia virus in finfish. Journal of Fishery Sciences of China, 2019, 26(1):214-220.
[25]   王艳红, 曹宁, 贾桂燕, 等. 中度嗜盐菌Halobacillus Y5甘氨酸甜菜碱转运蛋白opuD基因的克隆及功能分析. 中国生物制品学杂志, 2017, 30(3):258-263.
[25]   Wang Y H, Cao N, Jia G Y, et al. Cloning and functional identification of glycine betaine-cholinecarnitine transporter opuD gene from Halobacillus Y5. Chinese Journal of Biologicals, 2017, 30(3):258-263.
[26]   Gouda T, Kuroda M, Hiramatsu T, et al. nhaG Na+/H+ antiporter gene of Bacillus subtilis ATCC9372, which is missing in the complete genome sequence of strain 168, and properties of the antiporter. Journal of Biochemistry, 2001, 130(5):711-717.
pmid: 11686935
[27]   Cui Y B, Cheng B, Meng Y W, et al. Expression and functional analysis of two NhaD type antiporters from the halotolerant and alkaliphilic Halomonas sp. Y2. Extremophiles: Life Under Extreme Conditions, 2016, 20(5):631-639.
doi: 10.1007/s00792-016-0852-8
[28]   Yamaguchi T, Tsutsumi F, Putnoky P, et al. pH-dependent regulation of the multi-subunit cation/proton antiporter Pha1 system from Sinorhizobium meliloti. Microbiology (Reading, England), 2009, 155(Pt 8):2750-2756.
doi: 10.1099/mic.0.028563-0
[29]   郭晋隆, 李国印, 苏亚春, 等. 甘蔗R2R3-MYB类似基因Sc2RMyb1的克隆及表达特性分析. 农业生物技术学报, 2012, 20(9):1009-1017.
[29]   Guo J L, Li G Y, Su Y C, et al. Cloning and expression analysis of a R2R3-MYB-like gene Sc2RMyb1 from sugarcane (Saccharum complex). Journal of Agricultural Biotechnology, 2012, 20(9):1009-1017.
[1] JIA Xiao,QIU Jin,SHU Juan,LI Hua,XI Shu-bin,ZENG Yi-tao,ZENG Fan-yi. Serum Progesterone Level Detection for the Screening of Recipient Cattle for Cloned Embryo Transfer and Their Pregnancy Diagnosis[J]. China Biotechnology, 2020, 40(7): 1-8.
[2] YUAN Xiao-ying,WANG Ya-zhe,SHI Wei-hua,CHANG Yan,HAO Le,HE Ling-ling,SHI Hong-xia,HUANG Xiao-jun,LIU Yan-rong. Methodological Study on Flow Detection of PNH Clone and Its Clinical Screening Significance[J]. China Biotechnology, 2019, 39(9): 33-40.
[3] Kun LIU,Shuang CUI,Fei-yun YANG,Xiao-dong HAN,Rui-gang WANG,Zi-yi ZHANG. Clone and Functional Identification of Cinnamoyl CoA Reductase Genes from Caragana intermedia[J]. China Biotechnology, 2018, 38(2): 18-29.
[4] XIANG Li, WANG Shen, TIAN Hai-shan, ZHONG Mei-juan, ZHOU Ru-bin, CAO Ding-guo, LIANG Peng, ZHANG Guo-ping, HE Tao, PANG Shi-feng. Constructing Mouse pET3C-Myc Vector and Its Expression in Rosetta(DE3) and Its Purification[J]. China Biotechnology, 2017, 37(2): 20-25.
[5] YAN Peng-cheng, ZHANGY Zhan-jiang, PEI Zhi-yong, FU Yan-ting, CHEN Yu-bao, LIU Tong. Design and Realization of Cloud Platform for Medicinal Plant Conservation[J]. China Biotechnology, 2017, 37(11): 37-44.
[6] ZHANG Li-li, XU Bi-yu, LIU Ju-hua, JIA Cai-hong, ZHANG Jian-bin, JIN Zhi-qiang. Analysis of Banana MaASR1 Gene Expression Profiles in Arabidopsis Under Drought Stress[J]. China Biotechnology, 2017, 37(11): 59-73.
[7] HE Shi-bao, YANG Cheng-fei, SHANG Sha, WANG Ling-yan, TANG Wen-chao, ZHU Yong. Cloning and Expression Analysis of Juvenile Hormone Binding Protein Gene Bmtol in Silkworm,Bombyx mori[J]. China Biotechnology, 2017, 37(10): 16-25.
[8] WAN Yong-qing, YANG Yang, ZHANG Chun-lin, WAN Dong-li, YANG Ai-qin, YANG Qi, WANG Rui-gang, LI Guo-jing. Cloning and Expression Analysis of CiDHN1 Gene in Caragana intermedia[J]. China Biotechnology, 2016, 36(4): 88-96.
[9] CHEN Li-na, TENG Mu-zhou, LU Yan-fang, ZHENG Wen-ling, MA Wen-li. miR-335 Expression in Tumor Tissues and Bioinformatic Analysis of Predicted Target Genes[J]. China Biotechnology, 2016, 36(3): 23-30.
[10] JIN Xiao-xia, DONG Yan-long, QIN Zhi-wei, YU Li-jie, WU Shu-ju, SONG Jian. Cloning and Expression Characteristic of CSEBF1 Gene in Cucumber (Cucumis stavius L.)[J]. China Biotechnology, 2014, 34(3): 41-47.
[11] LONG Min, DONG Ke, WANG Xi, CHEN Xi, LIU Chong, LIU Li, ZHANG Hui-zhong. Developing an Anti-human AEG-1 Monoclonal Antibody Secreting Hybridoma and Its Variable Region Fragment Amplification[J]. China Biotechnology, 2014, 34(12): 10-15.
[12] LI Jian-bo, JIANG Ming-feng, WANG Yong. Tibetan Sheep Mammary Gland Lysozyme: Molecular Cloning, Prokaryotic Expression and Its Antibacterial Activity[J]. China Biotechnology, 2013, 33(8): 38-44.
[13] YANG Qi, YIN Jia-jia, WANG Yin, WANG Rui-gang, LI Guo-jing. Cloning and Expression Analysis of CkLEA1 Gene in Caragana korshinskii Kom[J]. China Biotechnology, 2013, 33(5): 93-99.
[14] XIE Chun-fang, LI Yu-feng, LIU Da-ling, YAO Dong-sheng. The Stability Reconstruction of β-mannanase with N-glycosylation Modification[J]. China Biotechnology, 2013, 33(12): 79-85.
[15] SHEN Jian, ZHANG Yue, PAN Qiu-hui, SUN Fen-yong. Bioinformatics Analysis and Prediction of miR-17-92 Cluster Mediated Regulatory Network[J]. China Biotechnology, 2012, 32(03): 69-75.