Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (3): 38-46    DOI: 10.13523/j.cb.2108063
    
Establishment of Human GABAAR-CHO Cell Line Stable Expression
ZHANG Yi,WANG Chen,SHI Jing-jing,CHEN Xue-jun,ZHANG Rui-hua,JIN Qian,SHI Tong*(),LI Li-qin*()
State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
Download: HTML   PDF(3508KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: A functional α1β2γ2L-GABAAR-CHO human cell line is constructed in which α1 subunit is inducd expression and β2 and γ2L subunits are stable expression. Methods: The coding genes of human subunit α1, β2 and γ2L were amplified from human cDNA library, and the subunit vectors were respectively constructed. The three subunit vectors were cotransfected into CHO-K1 cells, and the stable expression clones were screened by resistance screening and membrane potential detection. The expression of subunits were identified by qPCR and western blot;the pharmacological function of α1β2γ2L-GABAAR-CHO line were identified by whole-cell patch clamp detection and membrane potential detection method. Results: The α1β2γ2L-GABAAR-CHO with high expression level was obtained by screening the clones. The cells stably expressed α1, β2 and γ2L subunits. The constructed α1β2γ2L-GABAAR-CHO cells expressed α1 subunit in the presence of tetracycline, and assembled with β2 and γ2L subunits to form α1β2γ2L-GABAAR with functional activity. Whole-cell patch clamp detection of α1β2γ2L-GABAAR-CHO showed that GABA could stimulate it and cause the characteristic current change of chloride channel in α1β2γ2L-GABAAR-CHO, and diazepam could enhance the activation effect of GABA on α1β2γ2L-GABAAR. Membrane potential detection showed that EC50 of agonist GABA was (177.72±15.92) nmol/L, EC50 of allosteric agent diazepam was (3.63±0.52) μmol/L, and IC50 of antagonist bicuculine was (538.83±29.55) nmol/L, respectively. Conclusion: α1β2γ2L-GABAAR-CHO cell line is successfully constructed by the induced expression strategy, which has the pharmacological function of specific detection of agonists, positive allosteric agents and antagonists.



Key wordsα1β2γ2L-GABAAR-CHO      Induced expression      Membrane potential detection      GABA      Diazepam     
Received: 27 August 2021      Published: 07 April 2022
ZTFLH:  Q819  
Corresponding Authors: Tong SHI,Li-qin LI     E-mail: tong198282@126.com;llq969696@163.com
Cite this article:

ZHANG Yi, WANG Chen, SHI Jing-jing, CHEN Xue-jun, ZHANG Rui-hua, JIN Qian, SHI Tong, LI Li-qin. Establishment of Human GABAAR-CHO Cell Line Stable Expression. China Biotechnology, 2022, 42(3): 38-46.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2108063     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I3/38

Gene Forward primer Reverse primer
α1亚基 ATGGATTGGTTTATT GCCGTG CTGTTGGAGCGTAGTGTTGTTT
β2亚基 TCCTCTCCTGG GTCTCCTTC GGTGTTGATTGTGGTCATTGTG
γ2L亚基 CATCTTTGTCTTCTCTGCTCTGG TTGTCCTTGCTTGGTTTCCG
GAPDH GTATTGGACGCCTGGTTACC CGCTCCTGGAAGATGGTGATGG
Table 1 qPCR primers for α1, β2, γ2L, GAPDH
Fig.1 Expression vector map of GABAAR subunits (a) pcDNA4/TO/zeo-α1 (b) pIRES/puro3-β2 (c) pcDNA3.1/hygro-γ2L
Fig.2 Expression of α1β2γ2L-GABAAR detected by FLIPR membrane potential
Fig.3 Expression of α1, β2 and γ2L subunits in GABAAR cell line identified by qPCR (a) GABAAR-CHO-α1, n=3 (b) GABAAR-CHO-β2, n=3 (c) GABAAR-CHO-γ2L, n=3. * P<0.05, ** P< 0.01
Fig.4 Expression of α1 and γ2L subunits in GABAAR cell line identified by western blot (a) Bands of protein expression (b) Relative expression of α1 subunit protein, n=3 (c) Relative expression of γ2L subunit, n=3.*p<0.05,** P<0.01
Fig.5 The activation effects of tool drugs GABA and Dia detected by whole cell patch clamp
Fig.6 Dose-effect relationship of GABA, Dia and bicuculine detected by membrane potential (a) Dose-effect relationship of GABA (b) Dose-effect relationship of Dia (c) Dose-effect relationship of bicuculine
[1]   Zhu S T, Noviello C M, Teng J F, et al. Structure of a human synaptic GABAA receptor. Nature, 2018, 559(7712):67-72.
doi: 10.1038/s41586-018-0255-3
[2]   Scott S, Aricescu A R. A structural perspective on GABAA receptor pharmacology. Current Opinion in Structural Biology, 2019, 54(2):189-197.
doi: 10.1016/j.sbi.2019.03.023
[3]   Casida J E, Durkin K A. Novel GABA receptor pesticide targets. Pesticide Biochemistry and Physiology, 2015, 121(6):22-30.
doi: 10.1016/j.pestbp.2014.11.006
[4]   Sieghart W. Allosteric modulation of GABAA receptors via multiple drug-binding sites. Advances in Pharmacology, 2015, 72(10):53-96.
[5]   Krall J, Balle T, Krogsgaard-Larsen N, et al. GABAA receptor partial agonists and antagonists: structure, binding mode, and pharmacology. Advances in Pharmacology, 2015, 72(10):201-227.
[6]   Maldifassi M C, Baur R, Sigel E. Functional sites involved in modulation of the GABAA receptor channel by the intravenous anesthetics propofol, etomidate and pentobarbital. Neuropharmacology, 2016, 105(6):207-214.
doi: 10.1016/j.neuropharm.2016.01.003
[7]   Lu J C, Hsiao Y T, Chiang C W, et al. GABAA receptor-mediated tonic depolarization in developing neural circuits. Molecular Neurobiology, 2014, 49(2):702-723.
doi: 10.1007/s12035-013-8548-x
[8]   Goehring A, Lee C H, Wang K H, et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nature Protocols, 2014, 9(11):2574-2585.
doi: 10.1038/nprot.2014.173 pmid: 25299155
[9]   Olsen R W. GABAA receptor: positive and negative allosteric modulators. Neuropharmacology, 2018, 136:10-22.
doi: 10.1016/j.neuropharm.2018.01.036
[10]   Olsen R W. Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes. Advances in Pharmacology, 2015, 73(1):167-202.
[11]   Phulera S, Zhu H T, Yu J, et al. Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor in complex with GABA. Elife, 2018, 7:e39383.
doi: 10.7554/eLife.39383
[12]   Sigel E, Steinmann M E. Structure, function, and modulation of GABA(A) receptors. Journal of Biological Chemistry, 2012, 287(48):40224-40231.
doi: 10.1074/jbc.R112.386664
[13]   Engin E, Benham R S, Rudolph U. An emerging circuit pharmacology of GABAA receptors. Trends in Pharmacological Sciences, 2018, 39(8):710-732.
doi: S0165-6147(18)30076-2 pmid: 29903580
[14]   Brickley S G, Mody I. Extrasynaptic GABAA receptors: their function in the CNS and implications for disease. Neuron, 2012, 73(1):23-34.
doi: 10.1016/j.neuron.2011.12.012 pmid: 22243744
[15]   Seol J, Fujii Y, Park I, et al. Distinct effects of orexin receptor antagonist and GABAA agonist on sleep and physical/cognitive functions after forced awakening. PNAS, 2019, 116(48):24353-24358.
doi: 10.1073/pnas.1907354116
[16]   Fogaça M V, Duman R S. Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Frontiers in Cellular Neuroscience, 2019, 13(4):87-119.
doi: 10.3389/fncel.2019.00087
[17]   Joesch C, Guevarra E, Parel S P, et al. Use of FLIPR membrane potential dyes for validation of high-throughput screening with the FLIPR and microARCS technologies: identification of ion channel modulators acting on the GABA(A) receptor. Journal of Biomolecular Screening, 2008, 13(3):218-228.
doi: 10.1177/1087057108315036
[18]   廉靖靖. 非经典苯二氮䓬结合位点对GABAA受体功能的调节作用研究. 北京: 军事科学院, 2020.
[18]   Lian J J. Regulatory effects of nonclassical benzodiazepine binding sites on GABAA receptors. Beijing: Academy of Military Sciences, 2020.
[19]   郑双佳. 基于荧光的中枢神经系统γ-氨基丁酸受体的早期筛选技术的建立. 通辽: 内蒙古民族大学, 2020.
[19]   Zheng S J. Establishment of an early screening technique for γ-aminobutyric acid receptors based on fluorescence in central nervous system. Tongliao: Inner Mongolia University for Nationalities, 2020.
[20]   潘东升, 张颖丽, 王三龙. 自动膜片钳技术检测药物对hERG通道抑制作用//第九届药物毒理学年会, 新时代新技术新策略新健康论文集. 武汉: 中国药理学会, 2019: 449-450.
[20]   Pan D S, Zhang Y L, Wang S L. Automatic patch clamp technique was used to detect the inhibitory effect of drugs on hERG channels//The 9th Annual Conference on Pharmacotoxicology, New Era, New Technique, New Strategy, New Health. Wuhan: Chinese Pharmacological Society, 2019: 449-450.
[1] SU Yan-nan, XUE Zheng-lian, CHEN Tao, MA Qi-ya. The Optimized Phospholipase A1 Gene Expression of Serratia marcescens PL-06 in E. coli[J]. China Biotechnology, 2013, 33(7): 36-42.
[2] ZOU Zhi. Advances on Factors Influencing Induction of Agrobacterium tumefaciens Virulence Genes[J]. China Biotechnology, 2011, 31(7): 126-132.
[3] LIU Xian-De, ZHANG Guo-Fan. The Fluorescent Marker Development Based on MegaBACE 1000 DNA Sequencing System[J]. China Biotechnology, 2009, 29(12): 90-93.
[4] DENG Yong-Kang-1, TUN Min-Lu-2, LIU Cheng-Bang-1, DU Lin-Fang-1, WU Li-Li-1, LI Man-1, MENG Yan-Fa-1. Expression of recombinant uricase in E.coli JM109(DE3)Induced by lactose[J]. China Biotechnology, 2009, 29(07): 74-79.